Spring Cloud Data Flow Server for Cloud Foundry

1.2.3.BUILD-SNAPSHOT

Sabby Anandan, Eric Bottard, Mark Fisher, llayaperumal Gopinathan, Gunnar Hillert, Mark
Pollack, Thomas Risberg, Marius Bogoevici, Josh Long, Michael Minella, David Turanski

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Cloud Foundry

Table of Contents

I CT =) 1] o] ¢= T (=0 H PP P PSPPI 1
1. Deploying on Cloud FOUNGIYooiiiiiiiiii e 2
1.1. Provision a Redis service instance on Cloud Foundrycc.ccoivviiiiiiicvinccieee, 2

1.2. Provision a Rabbit service instance on Cloud Foundrycccooviiiiiiiiiiiiiinecinee. 2

1.3. Provision a MySQL service instance on Cloud Foundryccccoiviiiiiiiiiiiiiiinnenns 2

1.4. Download the Spring Cloud Data Flow Server and Shell appsccooovvveviviinennnnn. 3

1.5. RUNNING thE SEIVEN ..ottt e s 3
Deploying and Running the Server app on Cloud Foundryccccoeviviviiniiinnnnnnnn. 3
Configuring Defaults for Deployed APPS ...ccvvveveeieiiiiieiieeeieee e e e 4

Running the Server app 10Callyoooouiii i 5

Sample Manifest TEMPIALEiiiiiii e 6

1.6. Running Spring Cloud Data Flow Shell locallyccooiiviiiiiiiiiii e, 6

2. Application Names and PrefiXeS 8
2.1. USING CUSIOM ROULES ...ttt ettt e e e eeees 8

T D1=To] (o) Vil o T B LTt (=T A 2Y o] o] o7 11 To] o < 9
4. Application Level Service BiNAINGSoooiuiiiiiiiii e 10
5. A Note About User Provided SEIVICEScceuuuiiiiiiiieiiiii et 11
(SN o] o] [Tox=1 i o T = o] |1 aTe L o [r= Lo =P 12
7. Maximum Disk Quota CONfIQUIALIONocouuiiiiiiii e 15
7.1. PCF’s Operations Manager Configurationcccooveiiiiiiiiiiinieneeieeeei e 15

7.2. Scale APPLICALION ...ceuniiii e 15

7.3. Configuring target free disk percentageocoiviii i 15

LI o] o] [Tor= 11T] 1 PP PPPRT 17
N o g1 =T o £ = PP 18
T a1 (o (8 ox 1 o] o NN PP PP 19
9. Microservice ArchiteCtural STYIEi oo e 21
9.1. Comparison to other Platform architeCturescocoviiiiiiiiii i, 21

10. Streaming APPHCALIONSoueiiii i ettt e aa s 23
10.1. Imperative Programming Modelcooiiiiiiiiiiiii e 23
10.2. Functional Programming MoOdelcoeiuiiiiiiiiiiicr e 23

S 1 (= T= T 1 PP UPT PPN 24
11,0, TOPOIOGIES ..ceveeieite ettt ettt e e et e eeeaans 24
B o o T = o T3 24
11,3, PArtitiONINGueeeieieei et ettt e e e ea e 24
11.4. Message Delivery GUAranteescoouuiieiiiiiiieeiiii et 25

D Y 4T Y TN 27
13. TaSK APPHCALIONSeeeiiit ettt e e e e et e e e e e e eeans 28
14, DAt FIOW SEBIVEL ...uiiiiieiiie ettt et e e et e e e et e et e e et e e et e e eaeeeens 29
I R 1 T oo g £ 29
14.2. CUSTOMIZATION ...unieiie it e et e e et e e et e e e e e et e e e e eanaeeees 29
LA.3. SECUIMLY ettt ettt ettt ettt e e et e et b e e e 30

LT = {011 10T PP 31
15.1. FAUIt TOIBIANCEoenieteei et e e et e e e e eees 31
15.2. ReSsoUurce ManagemMENTiiiuiiiiiiiei ettt e e e eeas 31
15.3. Scaling @t TUNLIMEueieii e e e e e et e e e aan s 31
15.4. APPlICAtioN VEISIONINGuieeiiiiieiii ettt e e e e eeens 31

V. Server CONTIQUIALIONiiiiii ettt e et e e et e e e et e e e e nea s 32

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry iii

Spring Cloud Data Flow Server for Cloud Foundry

16. FEAUIE TOGUIES ..ouiiiiiiiii ettt e et e et e e et e e e 33
17. Database CONfIQUIALIONoeiiiiiieii e e e e 34
17.1. Adding a custom JDBC dlVETcc.uiiiiiiiii e e e e e e 35

R ST =T o U] 1P UP PP UPPPTI 36
18.1. ENabliNg HTTPS oottt 36
Using Self-Signed CertifiCatesoiiiiiieiiiiiiiie e 37
Self-Signed Certificates and the Shell ... 37

18.2. Traditional AUthentiCationoiiiiiiiii e 38
Single User AUthentiCationoooiiiiiiiiiiiiie e e 38

File based authentiCationooiiiiiiiii e 40

[N 011 1= o = i) o 40

LDAP TranSPOrt SECUIILYccuuiiiiieeiiieeiiieeiiees e e e e e ts e e st e e sae e st e eaaeeaanaees 41

Shell AUtheNTICAtIONoiii e e 42
Customizing AULNOKZALIONiiiiiiiee e e e 42
Authorization - Shell and Dashboard Behaviorcccooveeviiiiiiiiiieeceein 45
AUthorization With LOBP ...ccevuniiiiiiee e 45

18.3. QAULN 2.0 oo et 45
OAuth REST Endpoint AUthOriZationcccouiiiiiii i 46

OAuth Authentication using the Spring Cloud Data Flow Shell 46

OAuUth2 Authentication EXamPIESuuiiiiiiiiiieiiii e 47

LOCAlI OAULN2 SEIVELuiiiiiieiiiieeee et 47

Authentication using GItHUD ..., 47

18.4. Securing the Spring Boot Management Endpointscccovveviiiiiiiiiiiiiieiiiineeeens 48

19. Monitoring and ManagEMENTuieiiiiiiiii e e e e e e e e e e e e e e e eaa s 50
19.1. SPring BOOt ACMIN ...oeiiiiiiii et e e e 50
19.2. Monitoring Deployed APPIICALIONSuiiiiiiiiieiii e 51
19.3. Log and DataDog MEtriCWIILETcciuueiiieiii e e e e e 54

LV 01| TSP 55
PO IS g 1= | I @] o] 1T oL PSP 56
21. Listing available COMMANAScccovuiiiiiii e 57
22. TAD COMPIELION .ouiiiiii ettt ettt e ettt e e ettt e e et e at e e eeraaeaees 58
23. White space and qQUOLE TUIESooiiiiiiiiiii e e et eees 59
23.1. QUOLES AN ESCAPING ..uvvviieiiieii i 59

S (= | I] = PP 59

DSL PArsiNg FUIESoouiiieiii et e e e e 60

SpPEL syntax and SPEL lteralsc.cooiiiiiiiii e 60

Putting it all tOgEtNEr ... 61

R TS 1 == 0 62
P a1 (oo (1ot i o] o H PP PTPTTTPSPPPP 63
24.1. Stream PiIPeling DSLcoouuiiiiiiiiieiii et 63
P AN o] o] o= 14 To) g I o] (o] 1] =2 T PP PR 63

25, LIfECYCIE Of SIrBAMS ..iiui it e e e e e e e e e e e et e e e eeeen 65
25.1. REQISIEr @ SIEAIM AP eeruiieiiiti ettt e et e et e e et e e eab e eene 65
Whitelisting application Propertiesov oo 67

Creating and using a dedicated metadata artifactccooeeiiiiiiieiin e, 67

Using the companion artifaCtcoeuuiiiiiiiii e 68

25.2. Creating custom appliCationsuiiiiiiiiiiiiii e 69
25.3. Creating @ SIrEAIM ..ot et e e e e e e e et e e e e e e e aaaees 69
APPIICAtION PrOPEITIES .. iiiiiiieeiii ettt e e e e e e eees 70

Passing application properties when creating a streamccccocceeveennnn. 70

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry iv

Spring Cloud Data Flow Server for Cloud Foundry

Deployment PrOPEITIESoeeuii i 71
Application properties versus Deployer propertiesccooevevereeievinneeeennnnnn. 71

Passing instance count as deployment propertyccooveveieeeiiiieeiineeinneennnn. 72

Inline vs file reference Propertiescooviiiiiiiiiiiiii e 72

Passing application properties when deploying a streamcccevevvnnenee. 73

Passing Spring Cloud Stream properties for the application 73

Passing per-binding producer consumer propertiesccceeeeeeveeeineeennneenn. 74

Passing stream partition properties during stream deployment 74

Passing application content type pPropertiesccooveviieviiiieiiiieeiineeie e, 75

Overriding application properties during stream deployment 76

Common application ProPEITIESueiiiiiieieiii et aeeeens 76

25.4. DESIrOYING @ SIIEAM ...cuvuiiiiiii e i e e et e e et e e e e e e e e e e et e e et e e ean e eraees 76
25.5. Deploying and Undeploying StrEAMSoceviiiiieiiiiiieeiiiiieeeei e 76

B TS (== 10 T 1 Y I 78
26.1. TAP @ SHBAIM 1ottt ittt 78
26.2. Using Labels in @ SIrea@mooooiiiiiiiiii et 78
26.3. Named DeSHNALIONSiiiiiiiiiieii e e e e e e e e s e et e e aneeanaaes 78
26.4. Fan-in @nd FaN-0ULoooiiiiiiiiiii et e e e e reeennnee 79

27. Stream applications with multiple binder configurationscccooeviiiiinieiiine e, 80
28, EXAMIPIES et 81
28.1. SiMple Stream ProCESSINGuiiiiieiiii et e e e e e e e e e e e e et eeanaaees 81
28.2. Stateful Stream ProCESSINGccuuuiiiiiiiieiiii e et e e e aees 81
28.3. Other Source and Sink Application TYPESoviiiiiiiiiiii e 82

WL TASKS ettt ettt et e e nra s 83
P22 TR 1o o To 18 ox 1T o U TP 84
30. The LIfecyCle Of @ TASKcoiiiiiieiii et e 85
30.1. Creating a Task APPIICALIONccivuiiiiiicii e 85
Task Database ConfigUIationc..iiiiiiiiii i 85

30.2. Registering a Task ApPlCAtioNcoouuiiiiiii e 86
30.3. Creating a Task Definitioncoeiiiiiiiiiiiiii e e 87
30.4. LAUNCHING @ TASK ...uiiiiiiiiiiiii ettt 87
Common application ProPEITIESuiiiiiriieeeiii e eeaeens 87

30.5. Reviewing Task EXECULIONScociuuiiiiiiiiiie e e e e e e e e 88
30.6. Destroying @ Task Definitioncoouuiiiiiiiiieiii e 88

31. Subscribing to Task/BatCh EVENLSc..uiiiiiiiiiiiii e 90
32. Launching Tasks from @ SIrEAIMoiiuiiiiiiiiii e e e e e e 91
I I I o (o =T I T TSP PPTOP U P PP UPPPTTRUPPIN 91
32.2. TaskLaunchRequest-transformccouuiiiiiiiiiii e 92

IS T O] 41 0 To 1= To I - T (PN 93
33.1. Configuring the Composed Task RUNNEToooiiiiiiiii e, 93
Registering the Composed Task RUNNETcooiiiiiiiiiiiiiiii e 93
Configuring the Composed Task RUNNETcocoviiiiiiiiiii e 93

33.2. The Lifecycle of a Composed Taskccooivuiiiiiiiiiinii e 93
Creating a CompPOSEd TASKccieuiniiiiiiiiie e 93

Task Application Parametersoovuuiiiiiiieii e 94

Launching @ Composed Taskoooiiiiiiiiiiiii e 94

S = (1 1S - 94

Destroying a CompoOSEd TaASKuiiiiiieiiieiiiie i e e e e e e e e e e e eaens 95

Stopping & COMPOSEA TASKiiiiiiieiiii e 95
Restarting a CompoSed TaSKcccouuiiiiiiiiieiiii e e 95

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry \

Spring Cloud Data Flow Server for Cloud Foundry

34. COMPOSEA TASKS DSL ...ttt et e e et e e e et e e eena e aees 96
Y I @o) Lo 1o g = | I =3 =T od 1 11T o 96
34.2. Transitional EXECULIONuuiiiiiiiiiieii e e e e et a e e 98

BaSIC TranSItioNo.uiiiiiiii e 98

Transition With @ WIlACardoiiiiiiiii e 99

Transition With a Following Conditional EXECUtiONcoccviiiiiiiiiiiiieiiieeeiee, 99

34.3. SPIE EXECULION .ovtiiiiiiie ettt ettt e et eeenanns 100

Split Containing Conditional EXECULIONviiiiiiiiiiiiiiieeeii e 101

VIII. Tasks 0N CloUd FOUNAIYouuiiii e e e e e e e e e et e e et e e et e e aneeaens 103

35. Version CompPatiDIlityiooiiiii e 104

11 T e To] 11 o TP UPPPTT PP 105

37. Task Database SChEMAuuiiiiiiii e eaaas 106

38. RUNNING Task APPHCALIONSccoeuiiieiiiii e 107
TS T O (=7 (= T =] 107
38.2. LAUNCH @ TASK ..eiiiiiiiiiiii et 107
38.3. VIEBW TASK LOGS ..eeetuneeiiiiieeiiit ettt ettt ettt e e et e e e e e e 107
TS S I] A - 1] <P 108
38.5. List TASK EXECULIONScceeveiieiiiiiiee ittt e et eea e 108
38.6. DESIIOY @ TASK ...ueiieiiieieii ettt 108
38.7. Deleting Task From Cloud FOUNAIYoouiiiiiiiiiiiii e 108

DO B 7= T o1 o To 7= T o PSPPI 109

1 TS T 1o} o To 18 od 1T o I PP 110

O Y o] o1 PP PPTPPP 111
40.1. Bulk Import of ApplICAtIONSccuuiiiicie e 111

g T U 01 1] SR PRP 113

Y = o 0 S 114

R R O (== (IS] (=T 1 o TR 116

N I T 117
g N o 1 PP 117

Create a Task Definition from a selected Task APPcccovevviiiiiiiieiin e, 117
View Task APP DetailSccouuiiiiiiiiiiiii e 118
N I T =Y {11 4T 1 118
Creating Task Definitions using the bulk define interfacecccoooiiee. 118
Creating Composed Task Definitionsccoouviieiiiiiiiei e 119
(6= 18] (o] 11 o N IF=] PP 120
e B b (= Tox 110 o 1 PSP 121

TN oo 1S 122

45.1. LiSt JOD @XECULIONSuuiiiiiiii ettt 122

JOb EXECULION AELAIIS .. .ceevviieieiii e 123

Step eXeCution detallScoouuiiiiiii e 123

StEP EXECULION PrOGIESSiiiiiiieiiiii ettt e e et eeeeaa e eees 123

T Y = 11 1o 125

Ko REST APL GUIAE ...ttt ettt e e et e e et e e e e et e e e e et e e e e et e eeaereaaaaes 126
D Y o] o 1= o o] 2 SO 127

A. Data FIOW TEMPIALEcovviiiiiiii e e e e e e e aanas 128
A.1. Using the Data FIOW TemMPIatecoouuiiiiiiiiii e 128

B. SPriNg XD t0 SCDF ...ouuiiiiiiii it e e et e e e e a e 130
B.1. Terminology ChanQescccuiiiiiiiiiiii e e 130
B.2. Modules t0 APPIICALIONSuiiiiiiiieei et 130

OI01S] (0] o I Y o] o] o%=1 o] PP 130

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry Vi

Spring Cloud Data Flow Server for Cloud Foundry

Application REGISIIAtIONcoouuuiiiiiiie e 130
APPIICAtION PrOPEITIES ..ottt 131

B.3. Message BUS 10 BINEISciuiiiiiii e e 131
MESSAGE BUS .. eeeiiiiiit e 131
1] o = PP 131
Named ChanNEIScooiiiiiiii e 132
Directed Graphsi oo 132

B.4. BAtCh 10 TASKS ...uiiiiiiiiiiiii e 132
B.5. Shell/DSL COMMANGScovviiiiiiiie ettt e e e e s 133
BLB. REST-API ...ttt e e e ettt e e e e e et 133
2 TR [T 133
B.8. Architecture COMPONENLSuiiiiiiiiiiie i e e e e e e e e e e e e e et e et e e aaeeaens 134
o To] (=TT o [T SO UPR T PPTRPPTPPN 134

LI 21 134
REAIS . 134
ClIUSEEN TOPOIOGY ..ttt 134

B.9. Central ConfiQUIratioNoooiiiiiiiiii e 134
B.10. DISHDULION ... e 134
B.11. Hadoop Distribution Compatibilitycooeiiiiiiiiiiiii e 135
B.12. YARN DEPIOYMENL ..oiiiiiiiiieeiii ettt 135
B.13. USE Case COMPAIISONceuuiiiiieiiieeiiieeetieetaesttaeesteesteestnae et eeannaretrerraeranns 135
USE CaASE L oiiiiiiiiiiii e 135

USE CASE HH2 oiiiiiiii ettt ettt 136

USE CaSE H3 ittt 136
C.BUIING .t et e e 138
O30 I B T T 0 1 1= 01 7= 11T o [T PP 138
C.2. Working With the COUEcouiiiiiii e e 138
Importing into eclipse with M2eClipSe ..o 138
Importing into eclipse without M2eclipSeccooiiiiiiiiiii e 139

[T @do] 11U 1] o R 140
D.1. Sign the Contributor License AgQreementcc.uuiiiiiiiiieiiiiie e 140
D.2. Code Conventions and HOUSEKEEPINGccouvuiiiiiiiieiiiiie e 140

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry vii

Part I. Getting started

Spring Cloud Data Flow Server for Cloud Foundry

1. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
so, the server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple

laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the server can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

@ Note

By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty.
It is intentionally designed to allow users to have the flexibility of choosing and registering
applications, as they find appropriate for the given use-case requirement. Depending on the
message-binder of choice, users can register between RabbitMQ or Apache Kafka based
maven artifacts.

1.1 Provision a Redis service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30nb redis

A redis instance is required for analytics apps, and would typically be bound to such apps when you
create an analytics stream using the per-app-binding feature.

1.2 Provision a Rabbit service instance on Cloud Foundry

Use cf nar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cloudamgp | emur rabbit

Rabbit is typically used as a messaging middleware between streaming apps and would be bound to
each deployed app thanks to the SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES
setting (see below).

1.3 Provision a MySQL service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cleardb spark ny_nysql

An RDBMS is used to persist Data Flow state, such as stream definitions and deployment ids. It can
also be used for tasks to persist execution history.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 2

https://github.com/spring-cloud/spring-cloud-config
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
http://docs.spring.io/spring-cloud-dataflow/docs/1.2.3.RELEASE/reference/html/_dsl_syntax.html#_register_a_stream_app
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Cloud Data Flow Server for Cloud Foundry

1.4 Download the Spring Cloud Data Flow Server and Shell
apps

wget http://repo.spring.iol/snapshot/org/springframework/cl oud/ spring-cl oud- dat af | ow server -

cl oudf oundry/ 1. 2. 3. BUl LD- SNAPSHOT/ spri ng- cl oud- dat af | ow server - cl oudf oundry- 1. 2. 3. BUl LD- SNAPSHCT. j ar
wget http://repo.spring.iolrel ease/org/springframework/cloud/spring-cloud-datafl owshell/1.2. 3. RELEASE
spring- cl oud- dat af | ow-shel | - 1. 2. 3. RELEASE. j ar

1.5 Running the Server

You can either deploy the server application on Cloud Foundry itself or on your local machine. The
following two sections explain each way of running the server.

Deploying and Running the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.

@ Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

cf push datafl owserver -b java_buildpack -m 2G -k 2G --no-start -p spring-cloud-dataf| ow server-
cl oudf oundry- 1. 2. 3. BUl LD- SNAPSHOT. j ar

cf bind-service datafl owserver redis

cf bind-service datafl ow server ny_nysql

@ Important

The recommended minimal memory setting for the server is 2G. Also, to push apps to PCF and
obtain application property metadata, the server downloads applications to Maven repository
hosted on the local disk. While you can specify up to 2G as a typical maximum value for disk
space on a PCF installation, this can be increased to 10G. Read the maximum disk quota
section for information on how to configure this PCF property. Also, the Data Flow server itself
implements a Last Recently Used algorithm to free disk space when it falls below a low water
mark value.

@ Note

If you are pushing to a space with multiple users, for example on PWS, there may already be
a route taken for the applicaiton name you have chosen. You can use the options - - r andom
r out e to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill
in {org}, {space}, {email} and {password} before running these commands.

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_URL https://api.run.pivotal.io
cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG {or g}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE {space}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER_ CLOUDFOUNDRY_DOMAI N cf apps.io

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES r abbi t

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_ CLOUDFOUNDRY_TASK_SERVI CES ny_nysql

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME {enmi |}

cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_PASSWORD { passwor d}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON f al se

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 3

Spring Cloud Data Flow Server for Cloud Foundry

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

@ Note

If you are deploying in an environment that requires you to sign on using the Pivotal Single Sign-
On Service, refer to the section ??7? for information on how to configure the server.

Spring Cloud Data Flow server implementations (be it for Cloud Foundry, Mesos, YARN, or Kubernetes)
do not have any default remote maven repository configured. This is intentionally designed to provide the
flexibility for the users, so they can override and point to a remote repository of their choice. The out-of-
the-box applications that are supported by Spring Cloud Data Flow are available in Spring’s repository,
so if you want to use them, set it as the remote repository as listed below.

cf set-env datafl ow server SPRI NG APPLI CATI ON_JSON '{"maven": { "renote-repositories": { "repol":
{ "url": "https://repo.spring.io/libs-release" } } } }'

where r epol is the alias name for the remote repository.

@ Note

If you need to configure multiple Maven repositories, a proxy, or authorization for a private
repository, see Maven Configuration.

Configuring Defaults for Deployed Apps

You can also set other optional properties that alter the way Spring Cloud Data Flow will deploy stream
and task apps:

» The default memory and disk sizes for a deployed application can be configured. By default they are
1024 MB memory and 1024 MB disk. To change these, as an example to 512 and 2048 respectively,
use

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM MEMORY 512
cf set-env datafl ow server SPRI NG CLOUD DEPLOYER_ CLOUDFOUNDRY_STREAM DI SK 2048

» The default number of instances to deploy is set to 1, but can be overridden using

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM | NSTANCES 1

* You can set the buildpack that will be used to deploy each application. For example, to use the Java
offline buildback, set the following environment variable

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM BUI LDPACK j ava_bui | dpack_of fli ne

» The health check mechanism used by Cloud Foundry to assert if apps are running can be customized.
Current supported options are port (the default) and none. Change the default like so:

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM HEALTH CHECK none

@ Note

These settings can be configured separately for stream and task apps. To alter settings for
tasks, simply substitute STREAMwith TASK in the property name. As an example,

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 4

http://docs.spring.io/spring-cloud-dataflow/docs/1.2.3.RELEASE/reference/htmlsingle/#getting-started-maven-configuration

Spring Cloud Data Flow Server for Cloud Foundry

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_TASK MEMORY 512

c: Tip
All the properties mentioned above are @onfi gur ati onProperti es of the Cloud Foundry
deployer. See CloudFoundryDeploymentProperties.java for more information.

We are now ready to start the app.

cf start datafl ow server

Alternatively, you can run the Admin application locally on your machine which is described in the next
section.

Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure
the application either by passing in command line arguments (see below) or setting a number of
environment variables.

To use environment variables set the following:

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_URL=https://api.run.pivotal.io
export SPRI NG _CLOUD_ DEPLOYER_CLOUDFOUNDRY_ORG={ or g}

export SPRI NG CLOUD DEPLOYER_CLOUDFOUNDRY_SPACE={ space}

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N=cf apps. i 0

export SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY USERNAVE={ enwi | }

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={ passwor d}

export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON=f al se

export SPRI NG _CLOUD_DEPLOYER_ CLOUDFOUNDRY_STREAM SERVI CES=r abbi t

The following is for letting task apps wite to their db.

Note however that when the *server* is running locally, it can't access that db
task rel ated commands that show executions won't work then

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVI CES=ny_nysql

You need to fill in {org}, {space}, {email} and {password} before running these commands.

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Now we are ready to start the server application:

java -jar spring-cloud-datafl ow server-cl oudf oundry-1. 2. 3. BU LD- SNAPSHOT. j ar [--optionl=val uel] [--
option2=val ue2] [etc.]

C) Tip
Of course, all other parameterization options that were available when running the server on

Cloud Foundry are still available. This is particularly true for configuring defaults for applications.
Just substitute cf set - env syntax with export .

@ Note

The current underlying PCF task capabilities are considered experimental for PCF version
versions less than 1.9. See Feature Togglers for how to disable task support in Data Flow.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 5

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/v1.2.2.RELEASE/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeploymentProperties.java
http://docs.spring.io/spring-cloud-dataflow/docs/1.2.3.RELEASE/reference/html/enable-disable-specific-features.html

Spring Cloud Data Flow Server for Cloud Foundry

Sample Manifest Template

As an alternative to setting environment variables via cf set - env command, you can curate all the
relevant env-var's in mani f est . ynl file and use cf push command to provision the server.

Following is a sample template to provision the server on PCFDev.

appl i cations:
- nane: data-flow server
host: data-flow server
menory: 2G
di sk_quota: 2G
instances: 1
path: {PATH TO SERVER UBER- JAR}
env:
SPRI NG_APPLI CATI ON_NAME: dat a- f | ow server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL: https://api .| ocal . pcfdev.io
SPRI NG_CLOUD DEPLOYER CLOUDFOUNDRY_ORG pcf dev-or g
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE: pcf dev-space
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N: | ocal . pcfdev.io
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_USERNAME: admi n
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: admni n
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES: rabbi t
SPRI NG_CLOUD DEPLOYER CLOUDFOUNDRY_TASK_SERVI CES: mysq|
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON: true

SPRI NG_APPLI CATI ON_JSON {"maven": { "renote-repositories": { "repol": { "url": "https://
repo.spring.io/libs-release"} } } }
services:
- nysql

Once you're ready with the relevant properties in this file, you can issue cf push command from the
directory where this file is stored.

1.6 Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically
be the case if deployed on Cloud Foundry as explained here)

$ java -jar spring-cloud-datafl owshell-1.2.3. RELEASE. | ar

server - unknown: >dat af | ow confi g server http://datafl ow server.cfapps.io
Successfully targeted http://datafl owserver.cfapps.io
dat af | ow: >

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the RabbitMQ binder in bulk, you can with the following command. For more
details, review how to register applications.

‘ dat af | ow. >app inport --uri http://bit.ly/Avogadro- SR1-stream applicati ons-rabbit-nmaven

@ A Note about application URIs

While Spring Cloud Data Flow for Cloud Foundry leverages the core Data Flow project, and as
such theoretically supports registering apps using any scheme, the use of fi | e: // URIs does
not really make sense on Cloud Foundry. Indeed, the local filesystem of the Data Flow server
is ephemeral and chances are that you don’t want to manually upload your apps there.

When deploying apps using Data Flow for Cloud Foundry, a typical choice is to use maven: / /
coordinates, or maybe http:// URIs.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 6

Spring Cloud Data Flow Server for Cloud Foundry

You can now use the shell commands to list available applications (source/processors/sink) and create
streams. For example:

‘dataflow> stream create --name httptest --definition "http | |og" --deploy

@ Note

You will need to wait a little while until the apps are actually deployed successfully before posting
data. Tail the log file for each application to verify the application has started.

Now post some data. The URL will be unique to your deployment, the following is just an example

datafl ow. > http post --target http://datafl ow AxwwAhK- httptest-http.cfapps.io --data "hello world"

Look to see if hel | o wor | d ended up in log files for the | og application.

To run a simple task application, you can register all the out-of-the-box task applications with the
following command.

‘ dat af | ow. >app inport --uri http://bit.|y/Addi son- GA-task-applicati ons-maven

Now create a simple timestamp task.

‘dataflow. >task create mytask --definition "tinmestanmp --format="yyyy'"

Tail the logs, e.g. cf | ogs mnyt ask and then launch the task in the Ul or in the Data Flow Shell

‘ dat af | ow: >t ask | aunch nyt ask

You will see the year 2017 printed in the logs. The execution status of the task is stored in the database
and you can retrieve information about the task execution using the shell commandst ask executi on
list andtask execution status --id <I D OF_TASK> or though the Data Flow Ul.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 7

http://docs.spring.io/spring-cloud-task-app-starters/docs/1.0.1.RELEASE/reference/html/_timestamp_task.html

Spring Cloud Data Flow Server for Cloud Foundry

2. Application Names and Prefixes

To help avoid clashes with routes across spaces in Cloud Foundry, a naming strategy to provide a
random prefix to a deployed application is available and is enabled by default. The default configurations
are overridable and the respective properties can be set via cf set - env commands.

For instance, if you'd like to disable the randomization, you can override it through:

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM ENABLE_RANDOM APP_NAME_PREFI X f al se

2.1 Using Custom Routes

As an alternative to random name, or to get even more control over the hostname used by the deployed
apps, one can use custom deployment properties, as such:

dat af | ow. >stream create foo --definition "http | |o0g"

dat af | ow: >stream depl oy foo --properties "deployer. http.cloudfoundry. domai n=nmydonai n. com
depl oyer. htt p. cl oudf oundry. host =nyhost,
depl oyer. http. cl oudf oundry. r out e- pat h=ny- pat h"

This would result in the ht t p app being bound to the URL nyhost . mydonai n. conf ny- pat h. Note
that this is an example showing all customization options available. One can of course only leverage
one or two out of the three.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 8

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry#application-name-settings-and-deployments
http://myhost.mydomain.com/my-path

Spring Cloud Data Flow Server for Cloud Foundry

3. Deploying Docker Applications

Starting with version 1.2, it is possible to register and deploy Docker based apps as part of streams and
tasks using Data Flow for Cloud Foundry.

If you are using Spring Boot and RabbitMQ based Docker images you can provide a common
deployment property to facilitate the apps binding to the RabbitMQ service. Assuming your RabbitMQ
service is named r abbi t you can provide the following:

cf set-env datafl ow server SPRI NG APPL| CATI ON_JSON
"{"spring.cloud. dat af | ow. appl i cati onProperties.stream spring.rabbitng. addresses":
"${vcap. servi ces.rabbit.credential s. protocol s.anmgp. uris}"}'

For Spring Cloud Task apps, something similar to the following could be used, if using a database
service instance named nysql :

cf set-env SPRI NG DATASOURCE URL ' ${vcap. services. nysql.credentials.jdbcUrl}"

cf set-env SPRI NG _DATASOURCE_USERNAME ' ${vcap. servi ces. nysql . credenti al s. user nane}'
cf set-env SPRI NG _DATASOURCE_PASSWORD ' ${vcap. servi ces. nysql . credenti al s. password}"'
cf set-env SPRI NG DATASOURCE DRI VER_CLASS NAME 'org. mari adb. j dbc. Dri ver'

For non-Java or non-Boot apps, your Docker app would have to parse the VCAP_SERVI CES variable
in order to bind to any available services.

@ Passing application properties

When using non-boot apps, chances are that you want the application properties passed
to your app using traditional environment variables, as opposed to using the special
SPRI NG_APPLI CATI ON_JSONvariable. To achieve this, set the following variables for streams
and tasks, respectively:

SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM USE_SPRI NG_APPLI CATI ON_JSON=f al se
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_USE_SPRI NG_APPLI CATI ON_JSON=f al se

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 9

Spring Cloud Data Flow Server for Cloud Foundry

4. Application Level Service Bindings

When deploying streams in Cloud Foundry, you can take advantage of application specific service
bindings, so not all services are globally configured for all the apps orchestrated by Spring Cloud Data
Flow.

For instance, if you'd like to provide mysql service binding only for the j dbc application in the following
stream definition, you can pass the service binding as a deployment property.

dat af | ow. >stream create --name httptojdbc --definition "http | jdbc"
dat af | ow: >stream depl oy --name httptojdbc --properties
"depl oyer. j dbc. cl oudf oundry. servi ces=nysql Service"

Where, nysql Service is the name of the service specifically only bound to jdbc
application and the http application wouldn't get the binding by this method. If you have
more than one service to bind, they can be passed as comma separated items (eg:
depl oyer. j dbc. cl oudf oundry. servi ces=nysql Servi ce, soneSer vi ce).

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 10

Spring Cloud Data Flow Server for Cloud Foundry

5. A Note About User Provided Services

In addition to marketplace services, Cloud Foundry supports User Provided Services (UPS). Throughout
this reference manual, regular services have been mentioned, but there is nothing precluding the use
of UPSs as well, whether for use as the messaging middleware (e.g. if you'd like to use an external
Apache Kafka installation) or for ad hoc usage by some of the stream apps (e.g. an Oracle Database).

Let's review an example of extracting and supplying the connection credentials from an UPS.

» A sample UPS setup for Apache Kafka.

cf create-user-provi ded-servi ce kaf kacups -p '{”brokers":"HOST: PORT", "zkNodes": " HOST: PORT" }"

e The UPS credentials will be wrapped within VCAP_SERVI CES and it can be supplied directly in the
stream definition like the following.

stream create fooz --definition "time | |og"

stream depl oy fooz --properties "app.tine.spring.cloud. stream kaf ka. bi nder. br okers=

${vcap. servi ces. kaf kacups. credenti al s. broker s}, app. ti me. spri ng. cl oud. st ream kaf ka. bi nder . zkNodes=
${vcap. servi ces. kaf kacups. credenti al s. zkNodes}, app. | og. spri ng. cl oud. stream kaf ka. bi nder. br oker s=
${vcap. servi ces. kaf kacups. credenti al s. broker s}, app. | og. spri ng. cl oud. stream kaf ka. bi nder. zkNodes=
${vcap. servi ces. kaf kacups. credenti al s. zkNodes}"

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 11

https://docs.cloudfoundry.org/devguide/services/user-provided.html

Spring Cloud Data Flow Server for Cloud Foundry

6. Application Rolling Upgrades

Similar to Cloud Foundry’s blue-green deployments, you can perform rolling upgrades on the
applications orchestrated by Spring Cloud Data Flow.

Let’'s start with the following simple stream definition.

dat af | ow. >stream create --nane foo --definition "time | |0g" --deploy
List Apps.
cf apps
Getting apps in org test-org / space devel opnent as test@ivotal.io...
K
name requested state i nstances menory di sk urls
foo-1 og started 1/1 1G 1G foo-1og. cfapps.io
foo-time started 1/1 1G 1G foo-tine.cfapps.io

Let's assume you've to make an enhancement to update the "logger" to append extra text in every log
statement.

» Download the Log Si nk application starter with "Rabbit binder starter” from start-scs.cfapps.io/

» Load the downloaded project in an IDE
e Import the LogSi nkConfi gur ati on. cl ass

e Adapt the handler to add extra text: | oggi ngHandl er. set Logger Nane("TEST [" +
this.properties.getNane() + "]1");

 Build the application locally

@Bpr i ngBoot Appl i cati on
@ nport (LogSi nkConf i gurati on. cl ass)
public class DenpApplication {

@\ut owi r ed
private LogSi nkProperties properties;

public static void main(String[] args) {
SpringApplication. run(DenmoApplication.class, args);

}

@ean
@per vi ceAct i vat or (i nput Channel = Sink. | NPUT)

publ i c Loggi ngHandl er | 0gSi nkHandl er () {
Loggi ngHandl er | oggi ngHandl er = new Loggi ngHandl er (t hi s. properties. getLevel ().nane());
| oggi ngHandl er . set Expressi on(this. properties.get Expression());
| oggi ngHandl er . set Logger Nane(" TEST [" + this.properties.getNane() + "]");
return | oggi ngHandl er;
}
}

Let's deploy the locally built application to Cloud Foundry

‘# cf push foo-log-v2 -b java_buil dpack -p denp-0.0.1-SNAPSHOT.jar -n foo-10g-v2 --no-start

List Apps.

cf apps
Getting apps in org test-org / space devel opnment as test@ivotal.io...

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 12

https://docs.pivotal.io/pivotalcf/1-7/devguide/deploy-apps/blue-green.html
http://start-scs.cfapps.io/

Spring Cloud Data Flow Server for Cloud Foundry

K

nanme requested state i nstances menory di sk urls

f oo-1 og started 1/1 1G 1G foo-1og. cfapps.io
foo-tine started 1/1 1G 1G foo-tine.cfapps.io

f oo-1 0g-v2 stopped 1/1 1G 1G foo-10g-v2. cfapps.io

The stream applications do not communicate via (Go)Router, so they aren't generating HTTP
traffic. Instead, they communicate via the underlying messaging middleware such as Kafka or
RabbitMQ. In order to rolling upgrade to route the payload from old to the new version of the
application, you'd have to replicate the SPRI NG_APPLI CATI ON_JSON environment variable from
the old application that includes spri ng. cl oud. stream bi ndi ngs. i nput . desti nati on and
spring. cl oud. st ream bi ndi ngs. i nput . gr oup credentials.

@ Note

You can find the SPRI NG_APPLI CATI ON_J SONof the old applicationvia: " cf env f oo-1 og".

cf set-env foo-log-v2
SPRI NG_APPL| CATI ON_JSON ' {"spri ng. cl oud. st ream bi ndi ngs. i nput. destination":"foo.tinme", "spring.cloud. stream bi ndi ngs. i nput.

Let's start f 0o- | 0og- v2 application.

cf start foo-1o0g-v2

As soon as the application bootstraps, you'd now notice the payload being load balanced between two
log application instances running on Cloud Foundry. Since they both share the same "destination" and
"consumer group", they are now acting as competing consumers.

Old App Logs:
2016- 08- 08T17: 11: 08. 94- 0700 [APP/ 0] QOUT 2016-08-09 00: 11: 08.942 INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11: 08
2016- 08- 08T17: 11: 10. 95- 0700 [APP/ 0] QUT 2016-08-09 00: 11:10.954 INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11:10
2016- 08- 08T17: 11: 12. 94- 0700 [APP/ 0] QOUT 2016-08-09 00: 11:12.944 [INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11:12

New App Logs:

2016- 08-08T17: 11: 07. 94- 0700 [APP/ 0] QUT 2016-08-09 00:11:07.945 INFO 26 --- [foo.time.foo-1] TEST
[l og. si nk : 08/09/16 00:11:07]

2016- 08- 08T17: 11: 09. 92- 0700 [APP/ 0] QUT 2016-08-09 00:11:09.925 INFO 26 --- [foo.tine.foo-1] TEST
[10g. sink : 08/09/16 00:11:09]

2016- 08-08T17: 11: 11. 94- 0700 [APP/ 0] QUT 2016-08-09 00:11:11.941 |INFO 26 --- [foo.tinme.foo-1] TEST
[1 o0g. sink : 08/09/16 00:11: 11]

Deleting the old version f oo- | og from the CF CLI would make all the payload consumed by the f 0o-
| 0g- v2 application. Now, you've successfully upgraded an application in the streaming pipeline without
bringing it down in entirety to do an adjustment in it.

List Apps.
cf apps
Getting apps in org test-org / space devel opment as test@ivotal.io...
K
nanme requested state i nstances menory di sk urls
foo-tine started 1/1 1G 1G foo-tine.cfapps.io
foo-1o0g-v2 started 1/1 1G 1G foo-10g-v2. cfapps.io

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 13

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

A comprehensive canary analysis along with rolling upgrades will be supported via Spinnaker
in future releases.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 14

http://www.spinnaker.io/

Spring Cloud Data Flow Server for Cloud Foundry

7. Maximum Disk Quota Configuration

By default, every application in Cloud Foundry starts with 1G disk quota and this can be adjusted to
a default maximum of 2G. The default maximum can also be overridden up to 10G via Pivotal Cloud
Foundry’s (PCF) Ops Manager GUI.

This configuration is relevant for Spring Cloud Data Flow because every stream and task deployment is
composed of applications (typically Spring Boot uber-jar’s) and those applications are resolved from a
remote maven repository. After resolution, the application artifacts are downloaded to the local Maven
Repository for caching/reuse. With this happening in the background, there is a possibility the default
disk quota (1G) fills up rapidly; especially, when we are experimenting with streams that are made
up of unique applications. In order to overcome this disk limitation and depending on your scaling
requirements,you may want to change the default maximum from 2G to 10G. Let's review the steps to
change the default maximum disk quota allocation.

7.1 PCF’s Operations Manager Configuration

From PCF's Ops Manager, Select "Pivotal Elastic Runtime" tile and navigate to "Application
Developer Controls" tab. Change the "Maximum Disk Quota per App (MB)" setting from 2048
to 10240 (10G). Save the disk quota update and hit "Apply Changes" to complete the configuration
override.

7.2 Scale Application

Once the disk quota change is applied successfully and assuming you've a running application, you
may scale the application with a new di sk_1 i m t through CF CLI.

cf scal e datafl owserver -k 10GB
Scal i ng app datafl owserver in org ORG/ space SPACE as user...
K
state since cpu menory di sk details
#0 runni ng 2016-10-31 03:07:23 PM 1.8% 497.9M of 1.1G 193. 9M of 10G
cf apps
Getting apps in org ORG/ space SPACE as user...
K
name requested state i nst ances menory di sk urls
dat af | ow server started 1/1 1.1G 10G dat af | ow server. apps.io

7.3 Configuring target free disk percentage

Even when configuring the Data Flow server to use 10G of space, there is the possibility of exhausting
the available space on the local disk. The server implements a least recently used (LRU) algorithm
that will remove maven artifacts from the local maven repository. This is configured using the following
configuration property, the default value is 25.

The | ow water mark percentage, expressed as in integer between 0 and 100, that triggers cleanup of
the local nmaven repository

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 15

Spring Cloud Data Flow Server for Cloud Foundry

(for setting env var use SPRI NG CLOUD DATAFLOW SERVER CLOUDFOUNDRY_FREE_DI SK_SPACE_PERCENTAGE)
spring. cl oud. dat af | ow. server. cl oudf oundry. f reeDi skSpacePer cent age=25

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry

16

Part Il. Applications

A selection of pre-built stream and task/batch starter apps for various data integration and processing
scenarios facilitate learning and experimentation. For more details, review how to register applications

http://cloud.spring.io/spring-cloud-stream-app-starters/
http://cloud.spring.io/spring-cloud-task-app-starters/

Part Ill. Architecture

Spring Cloud Data Flow Server for Cloud Foundry

8. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

* Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

» Short lived Task applications that process a finite set of data and then terminate.
Depending on the runtime, applications can be packaged in two ways

» Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

* Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are
e Cloud Foundry

» Apache YARN

Kubernetes
» Apache Mesos
* Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for:

* Interpreting and executing a stream DSL that describes the logical flow of data through multiple long
lived applications.

» Launching a long lived task application

* Interpreting and executing a composed task DSL that describes the logical flow of data through
multiple short lived applications.

» Applyhing a deployment manifest that describes the mapping of applications onto the runtime. For
example, to set the initial number of instances, memory requirements, and data partitioning.

» Providing the runtime status of deployed applications

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 19

Spring Cloud Data Flow Server for Cloud Foundry

As an example, the stream DSL to describe the flow of data from an http source to an Apache Cassandra
sink would be written as “http | cassandra”. These names in the DSL are registered with the Data
Flow Server and map onto application artifacts that can be hosted in Maven or Docker repositories.
Many source, processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router)
are provided by the Spring Cloud Data Flow team. The pipe symbol represents the communication
between the two applications via messaging middleware. The two messaging middleware brokers that
are supported are

» Apache Kafka
* RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

| Stream DSL | Data Flow
| http | cassandra I——)

Server

l

Target Runtime

Spring Boot

cassandra

Applications \ /

Figure 8.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 20

Spring Cloud Data Flow Server for Cloud Foundry

9. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar'’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the Ul to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

9.1 Comparison to other Platform architectures

Spring Cloud Data Flow's architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’'s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 21

Spring Cloud Data Flow Server for Cloud Foundry

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 22

Spring Cloud Data Flow Server for Cloud Foundry

10. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

10.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngSi nk {

@t r eanli st ener (Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @nabl eBi ndi ng annotation is what is used to tie together the input channel to the external
middleware.

10.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’'s KStream APl in
the programming model.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 23

Spring Cloud Data Flow Server for Cloud Foundry

11. Streams

11.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandr a, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

11.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

11.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

HTTP —_——
e : N Average
Partition 1 *‘ Processor ‘
N S 4 (.
HTTP
J - = (Average |
HTTP \ ’

Topic
Figure 11.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a parti ti onKeyExpr essi on producer property when deploying
the stream. The parti ti onKeyExpr essi on identifies what part of the message will be used as the
key to partition data in the underlying middleware. An i ngest stream can be defined as http |
aver ageprocessor | cassandr a (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 24

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Suppose the payload being sent to the http source was in JSON format and had a field called sensor | d.
Deploying the stream with the shell command stream deploy ingest --propertiesFile
i ngest Stream properti es where the contents of the file i ngest Stream properti es are

depl oyer. http. count =3
depl oyer . aver agepr ocessor . count =2
app. htt p. producer. partiti onKeyExpr essi on=payl oad. sensor | d

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payl oad. sensorld %
partiti onCount where the partiti onCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
Spring Cloud Stream Partitioning properties.

Also note, that you can't currently scale partitioned streams. Read the section Section 15.3, “Scaling
at runtime” for more information.

11.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing persistent
publish-subscribe semantics.

The Binder abstraction in Spring Cloud Stream is what connects the application to the middleware. There
are several configuration properties of the binder that are portable across all binder implementations
and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the common consumer properties maxAttenpts,
backOffInitiallnterval, backCOi f Maxl nterval, and backO f Mul tiplier. The default
values of these properties will retry the callback method invocation 3 times and wait one second for the
first retry. A backoff multiplier of 2 is used for the second and third attempts.

When the number of retry attempts has exceeded the naxAt t enpt s value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The dead letter
gueue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it
is a dedicated topic). To enable this for RabbitMQ set the consumer properties r epubl i sht oDl g and
aut oBi ndDl q and the producer property aut oBi ndDl g to true when deploying the stream. To always
apply these producer and consumer properties when deploying streams, configure them as common
application properties when starting the Data Flow server.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 25

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_binders
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find extensive declarative support for all the native QOS options.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 26

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

12. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

» Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

 Field Value Counter - Counts occurrences of unique values for a named field in a message payload

» Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 27

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud-stream-app-starters/field-value-counter/tree/master/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud-stream-app-starters/aggregate-counter/tree/master/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Cloud Foundry

13. Task Applications

The Spring Cloud Task programming model provides:

» Persistence of the Task’s lifecycle events and exit code status.

« Lifecycle hooks to execute code before or after a task execution.

» Emit task events to a stream (as a source) during the task lifecycle.

« Integration with Spring Batch Jobs.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry

28

Spring Cloud Data Flow Server for Cloud Foundry

14. Data Flow Server

14.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Dataflow REST-API
Server Deployer SPI

Admin / Flo Ul

AN Nos

CURL nof@EV
Cloud @undry @ X

Figure 14.1. The Spring Cloud Data Flow Server

14.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let's you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 29

https://github.com/spring-projects/spring-hateoas

Spring Cloud Data Flow Server for Cloud Foundry

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

14.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 30

Spring Cloud Data Flow Server for Cloud Foundry

15. Runtime

15.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

15.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

15.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, Uls, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

15.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 31

Part IV. Server Configuration

In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security. You will also learn how to configure Spring Cloud Data Flow
shell’s features.

Spring Cloud Data Flow Server for Cloud Foundry

16. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UlI) for:

1. Streams
2. Tasks
3. Analytics

One can enable, disable these features by setting the following boolean properties when launching the
Data Flow server:

e spring. cloud. dat af | ow. f eat ures. streans- enabl ed
e spring. cloud. dat af | ow. f eat ur es. t asks- enabl ed
e spring. cloud. dat af | ow. f eat ur es. anal yti cs-enabl ed

By default, all the features are enabled. Note: Since analytics feature is enabled by default, the Data
Flow server is expected to have a valid Redis store available as analytic repository as we provide a
defaultimplementation of analytics based on Redis. This also means that the Data Flow server'sheal t h
depends on the redis store availability as well. If you do not want to enabled HTTP endpoints to read
analytics data written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint / f eat ur es provides information on the features enabled/disabled.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 33

Spring Cloud Data Flow Server for Cloud Foundry

17. Database Configuration

A relational database is used to store stream and task definitions as well as the state of executed
tasks. Spring Cloud Data Flow provides schemas for H2, HSQLDB, MySQL, Oracle, Postgresql, DB2
and SqlServer that will be automatically created when the server starts. Out of the box Spring Cloud
Data Flow offers an embedded instance of the H2 database. The H2 database is good for development
purposes but is not recommended for production use.

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other database, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

The database properties can be passed as environment variables or command-line arguments to the
Data Flow Server.

* Environment variables:

export spring_datasource_url =jdbc: postgresql://|ocal host: 5432/ nydb
export spring_datasource_user nane=nyuser
export spring_datasource_passwor d=nypass
export spring_datasource_driver-class-nanme="org. postgresql.Driver"

e Command Line arguments If you are using MySQL.:

java -jar spring-cloud-datafl owserver-|ocal/target/spring-cloud-datafl owserver-1|ocal -1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: nysql : <db-i nf o> \

--spring. dat asour ce. user nane=<user > \

--spring. dat asour ce. passwor d=<passwor d> \

--spring.datasource.driver-class-nanme=org. mari adb. jdbc. Driver &

If you are using PostgreSQL:

java -jar spring-cloud-dataflow server-|ocal/target/spring-cloud-dataflow server-I|ocal -1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: post gresql : <db-i nfo> \

--spring. dat asour ce. user nane=<user > \

--spring. dat asour ce. passwor d=<passwor d> \

--spring. dat asource. driver-cl ass- nane=or g. postgresql . Driver &

If you are using HSQLDB:

java -jar spring-cloud-datafl owserver-|ocal/target/spring-cloud-datafl owserver-1|ocal -1.0.0. BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: hsql db: <db-i nf o> \

--spring. dat asour ce. user nanme=SA \

--spring. dat asource. dri ver-cl ass- nanme=or g. hsql db. j dbc. JDBCDri ver &

@ Note

There is a schema update to the Spring Cloud Data Flow datastore when upgrading from version
1.0.xto 1. 1. x. Migration scripts for specific database types can be found here.

@ Note

If you wish to use an external H2 database instance instead of the one embedded with Spring
Cloud Data Flow set the spri ng. dat af | ow. enbedded. dat abase. enabl ed property to
false. If spri ng. dat af | ow. enbedded. dat abase. enabl ed is set to false or a database
other than h2 is specified as the datasource the embedded database will not start.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 34

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Server for Cloud Foundry

17.1 Adding a custom JDBC driver

To add a custom driver for the database, for example Oracle, it is recommended that you rebuild the
Data Flow server and add the dependency to the Maven pom xni file. Since there is a Spring Cloud
Data Flow Server for each target platform, you will need to modify the appropriate maven pom xmni for
each platform. There are tags in each github repository for each server version.

To add a custom JDBC driver dependency for the local server implementation:

1. Select the tag that corresponds to the version of the server you want to rebuild and clone the github
repository.

2. Edit the spring-cloud-dataflow-server-local/pom.xml and in the dependenci es section add the
dependency for the database driver required. In the sample below, and Oracle driver has been
chosen.

<dependenci es>

<dependency>
<gr oupl d>com or acl e. j dbc</ gr oupl d>
<artifactld>ojdbc8</artifactld>
<versi on>12. 2. 0. 1</ ver si on>

</ dependency>

</ dependenci es>

3. Build the application as described here: Building Spring Cloud Data Flow

You can also provide default values when rebuilding the server by adding the following properties to
the dataflow-server.yml file

For example adding postgres would look something like this:

+ dataflow-server.yml

spring:
dat asour ce:
url: jdbc: postgresql://1ocal host: 5432/ nydb
user nane: nmyuser
password: mnypass
driver-cl ass-nane: org. postgresql.Driver

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 35

appendix-building.xml#building

Spring Cloud Data Flow Server for Cloud Foundry

18. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate using either:

+ OAuth 2.0

 Traditional Authentication (Incl. Basic Authentication)

Traditional Security
Authentication options: OAuth?2

Single Ldap File

User Based

Figure 18.1. Authentication Options

When choosing traditional authentication, the Spring Cloud Data Flow server will be the main
authentication point, using Spring Security under the covers. When selecting this option, users then
need to further define their preferred authentication mechanism aka select the desired authentication
backing store:

* Single User Authentication

» Ldap Authentication

» File-based authentication

When choosing between traditional authentication or OAuth2, keep in mind that both options are
mutually exclusive. Please refer to the sub-chapters below for a more detailed discussion.

@ Note

By default, the REST endpoints (administration, management and health), as well as the
Dashboard Ul do not require authenticated access.

18.1 Enabling HTTPS

By default, the dashboard, management, and health endpoints use HTTP as a transport. You can switch
to HTTPS easily, by adding a certificate to your configuration in appl i cati on. ym .

server:

port: 8443 O
ssl:

key-alias: yourKeyAlias

key-store: path/to/keystore

key- st or e- password: your KeySt or ePassword

key- password: your KeyPasswor d

trust-store: path/to/trust-store

trust-store-password: yourTrust St orePassword

OO0Ooooo

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 36

https://oauth.net/2/

Spring Cloud Data Flow Server for Cloud Foundry

0 As the default port is 9393, you may choose to change the port to a more common HTTPs-typical
port.

0 The alias (or name) under which the key is stored in the keystore.

0 The path to the keystore file. Classpath resources may also be specified, by using the classpath
prefix: cl asspat h: pat h/ t o/ keyst ore

0 The password of the keystore.

O The password of the key.

0 The path to the truststore file. Classpath resources may also be specified, by using the classpath
prefix: cl asspat h: path/to/trust-store

O The password of the trust store.

@ Note

If HTTPS is enabled, it will completely replace HTTP as the protocol over which the REST
endpoints and the Data Flow Dashboard interact. Plain HTTP requests will fail - therefore, make
sure that you configure your Shell accordingly.

Using Self-Signed Certificates

For testing purposes or during development it might be convenient to create self-signed certificates. To
get started, execute the following command to create a certificate:

$ keytool -genkey -alias dataflow -keyal g RSA -keystore datafl ow. keystore \
-validity 3650 -storetype JKS \
-dname "CN=l ocal host, OU=Spring, O=Pivotal, L=Kailua-Kona, ST=H, C=US' O
-keypass dat afl ow - st orepass dat afl ow

0 CNis the only important parameter here. It should match the domain you are trying to access,
e.g. | ocal host .

Then add the following to your appl i cati on. ym file:

server:
port: 8443
ssl:
enabl ed: true
key-al i as: datafl ow
key-store: "/your/path/to/dataflow keystore"
key-store-type: jks
key- st or e- password: dat afl ow
key- password: datafl ow

This is all that's needed for the Data Flow Server. Once you start the server, you should be able to
access it via https://localhost:8443/. As this is a self-signed certificate, you will hit a warning in your
browser, that you need to ignore.

Self-Signed Certificates and the Shell

By default self-signed certificates are an issue for the Shell and additional steps are necessary to make
the Shell work with self-signed certificates. Two options are available:

1. Add the self-signed certificate to the JVM truststore
2. Skip certificate validation

Add the self-signed certificate to the JVM truststore

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 37

https://localhost:8443/

Spring Cloud Data Flow Server for Cloud Foundry

In order to use the JVM truststore option, we need to export the previously created certificate from the
keystore:

‘ $ keytool -export -alias datafl ow -keystore datafl ow keystore -file datafl ow cert -storepass dataflow

Next, we need to create a truststore which the Shell will use:

$ keytool -inportcert -keystore dataflow truststore -alias dataflow -storepass dataflow -file
dat af | ow_cert -nopronpt

Now, you are ready to launch the Data Flow Shell using the following JVM arguments:

$ java - Dj avax. net.ssl.trust StorePassword=dat af | ow \
-D avax. net.ssl.trustStore=/path/to/datafl ow. truststore \
-Dj avax. net.ssl.trust StoreType=sj ks \
-jar spring-cloud-datafl owshell-1.2.3.BU LD SNAPSHOT. j ar

CD Tip
In case you run into trouble establishing a connection via SSL, you can enable additional logging
by using and setting the j avax. net . debug JVM argument to ssl .

Don't forget to target the Data Flow Server with:

dat af | ow. > dat af | ow config server https://|ocal host: 8443/

Skip Certificate Validation

Alternatively, you can also bypass the certification validation by providing the optional command-line
parameter - - dat af | ow. ski p-ssl -val i dati on=true.

Using this command-line parameter, the shell will accept any (self-signed) SSL certificate.

0 Warning

If possible you should avoid using this option. Disabling the trust manager defeats the purpose
of SSL and makes you vulnerable to man-in-the-middle attacks.

18.2 Traditional Authentication

When using traditional authentication Spring Cloud Data Flow will be the sole authentication provider.
In that case Dataflow REST API users would use Basic Authentication to access the endpoints.

When using that option, users have a choice of 3 backing stores for authentication details:
» Single User Authentication using Spring Boot properties

» File-based authentication for multiple users using a Yaml file

» Ldap Authentication

Single User Authentication

This is the simplest option and mimics the behavior of the default Spring Boot user user-experience. It
can be enabled by adding the following to appl i cati on. ynm or via environment variables:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 38

https://en.wikipedia.org/wiki/Basic_access_authentication

Spring Cloud Data Flow Server for Cloud Foundry

security:

basi c:
enabl ed: true O
realm Spring Coud Data Fl ow]

0 Enables basic authentication. Must be set to true for security to be enabled.
O (Optional) The realm for Basic authentication. Will default to Spring if not explicitly set.

@ Note

Current versions of Chrome do not display the realm. Please see the following Chromium issue
ticket for more information.

In this use-case, the underlying Spring Boot will auto-create a user called user with an auto-generated
password which will be printed out to the console upon startup.

With this setup, the generated user will have all main roles assigned:
* VIEW
+ CREATE

* MANAGE

INFO 0.5.b.a.s.SimpleJobServiceFactoryBean No database type set, using meta data indicating: H2
INFO c.d.s.c.s.BasicAuthSecurityConfiguration

Using default security password: bdee2af2-1629-46d6-a839-d571b34aee54 with roles "VIEW,CREATE ,MANAGE"

Authorization " 'hasRole('ROLE_VIEW')"' | '/metrics/streams’
Authorization " ' 'hasRole('ROLE_VIEW")" ' fabout"
Authorization " ' 'hasRole("'ROLE_VIEW')" | '/metrics/**'
Authorization " | "hasRole("ROLE_CREATE')' | '/metrics/**"
Authorization " ' 'hasRole('ROLE_MANAGE')" | '/management/**"
Configuration : Authorization 'GET' | 'hasRole('ROLE_VIEW')" | "/apps'
c.d.s.c.s.BasicAuthSecurityConfiguration : Authorization 'hasRole('ROLE_VIEW')" | '/apps/**'

Figure 18.2. Default Spring Boot user credentials

You can customize the user yourself using the following properties:

security. user.nanme=user # Default user nane.

security.user.password= # Password for the default user name. A random password is |ogged on startup by
defaul t.

security.user.rol e=VIEW CREATE, MANAGE # Granted roles for the default user nane.

@ Note

Please be aware of inherentissues of Basic Authentication and logging out, since the credentials
are cached by the browser and simply browsing back to application pages will log you back in.

Of course, you can also pass in credentials using system properties, environment variables or command-
line arguments as this is standard Spring Boot behavior. For instance in the following example,
command-line arguments are used to specify the user credentials:

$ java -jar spring-cloud-dataflowserver-local-1.2.3. BU LD SNAPSHOT. j ar \
--security. basic. enabl ed=true \
--security.user.nanme=test \
--security.user.password=pass \
--security.user.rol e=VI EW

If you need to define more than one file-based user account, please take a look at File based
authentication.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 39

https://bugs.chromium.org/p/chromium/issues/detail?id=544244
https://bugs.chromium.org/p/chromium/issues/detail?id=544244

Spring Cloud Data Flow Server for Cloud Foundry

File based authentication

By default Spring Boot allows you to only specify one single user. Spring Cloud Data Flow also supports
the listing of more than one user in a configuration file, as described below. Each user must be assigned
a password and one or more roles:

security:
basi c:
enabl ed: true
realm Spring Coud Data Fl ow

spring:
cl oud:
dat af | ow
security:
aut henti cati on:
file:
enabl ed: true O
users: O
bob: bobspassword, ROLE_MANAGE O

alice: alicepwd, ROLE_VIEW ROLE_CREATE

0 Enables file based authentication
0 Thisis a yaml map of username to password
O Each map val ue is made of a corresponding password and role(s), comma separated

LDAP Authentication

Spring Cloud Data Flow also supports authentication against an LDAP server (Lightweight Directory
Access Protocol), providing support for the following 2 modes:

* Direct bind
+ Search and bind
When the LDAP authentication option is activated, the default single user mode is turned off.

In direct bind mode, a pattern is defined for the user’s distinguished name (DN), using a placeholder for
the username. The authentication process derives the distinguished name of the user by replacing the
placeholder and use it to authenticate a user against the LDAP server, along with the supplied password.
You can set up LDAP direct bind as follows:

security:
basi c:
enabl ed: true
realm Spring Coud Data Fl ow

spring:
cl oud:
dat af | ow:
security:
aut henti cati on:

| dap:
enabl ed: true O
url: |dap://I|dap. exanpl e. com 3309 O
user DnPat t ern: ui d={ 0}, ou=peopl e, dc=exanpl e, dc=com]

0 Enables LDAP authentication
The URL for the LDAP server
O The distinguished name (DN) pattern for authenticating against the server

O

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 40

Spring Cloud Data Flow Server for Cloud Foundry

The search and bind mode involves connecting to an LDAP server, either anonymously or with a fixed
account, and searching for the distinguished name of the authenticating user based on its username,
and then using the resulting value and the supplied password for binding to the LDAP server. This option
is configured as follows:

security:
basi c:
enabl ed: true
realm Spring Coud Data Fl ow
spring:
cl oud:
dat af | ow
security:
aut henti cati on:
| dap:
enabl ed: true
url: ldap://1ocal host: 10389
manager Dn: ui d=adm n, ou=syst em
manager Passwor d: secret
user Sear chBase: ou=ot her peopl e, dc=exanpl e, dc=com
user Sear chFi |l ter: uid={0}

Oo0oooogoQg

0 Enables LDAP integration

The URL of the LDAP server

0 A DN for to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with next option)

O Apassword to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with previous option)

0 The base for searching the DN of the authenticating user (serves to restrict the scope of the search)

O The search filter for the DN of the authenticating user

C) Tip
For more information, please also see the chapter LDAP Authentication of the Spring Security
reference guide.

O

LDAP Transport Security

When connecting to an LDAP server, you typically (In the LDAP world) have 2 options in order to
establish a connection to an LDAP server securely:

» LDAP over SSL (LDAPSs)
 Start Transport Layer Security (Start TLS is defined in RFC2830)

As of Spring Cloud Data Flow 1.1.0 only LDAPs is supported out-of-the-box. When using official
certificates no special configuration is necessary, in order to connect to an LDAP Server via LDAPs.
Just change the url format to Idaps, e.g. | daps: / /| ocal host : 636.

In case of using self-signed certificates, the setup for your Spring Cloud Data Flow server becomes
slightly more complex. The setup is very similar to the section called “Using Self-Signed Certificates”
(Please read first) and Spring Cloud Data Flow needs to reference a trustStore in order to work with
your self-signed certificates.

@ Important

While useful during development and testing, please never use self-signed certificates in
production!

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 41

http://docs.spring.io/spring-security/site/docs/current/reference/html/ldap.html
https://www.ietf.org/rfc/rfc2830.txt

Spring Cloud Data Flow Server for Cloud Foundry

Ultimately you have to provide a set of system properties to reference the trustStore and its credentials
when starting the server:

$ java - D avax. net.ssl.trust St orePasswor d=dat af | ow \
-Dj avax. net.ssl.trustStore=/path/to/datafl ow truststore \
- D avax. net.ssl.trust StoreType=j ks \
-jar spring-cloud-starter-datafl owserver-1|ocal -1.2.3. BUl LD- SNAPSHOT. j ar

As mentioned above, another option to connect to an LDAP server securely is via Start TLS. In the LDAP
world, LDAPs is technically even considered deprecated in favor of Start TLS. However, this option is
currently not supported out-of-the-box by Spring Cloud Data Flow.

Please follow the following issue tracker ticket to track its implementation. You may also want to look
at the Spring LDAP reference documentation chapter on Custom DirContext Authentication Processing
for further details.

Shell Authentication

When using traditional authentication with the Data Flow Shell, you typically provide a username and
password using command-line arguments, e.g.:

$ java -jar target/spring-cloud-datafl ow shell-1.2.3.BU LD SNAPSHOT. j ar \
- -dat af | ow. user nanme=nmyuser \ O
- - dat af | ow. passwor d=nysecr et O

0 If authentication is enabled the username must be provided
O Ifthe password is not provided, the shell will prompt for it

Alternatively, you can target a Data Flow server also from within the Shell:

server - unknown: >dat af | ow confi g server
--uri http://1ocal host: 9393
--usernane myuser
--password nysecret
--skip-ssl-validation true

- - - -
O oo g

Optional, defaults to localhost:9393

Mandatory if security is enabled

If security is enabled, and the password is not provided, the user will be promted for it
Optional, ignores certificate errors (When using self-signed certificates). Use cautiously!

O oOooo

server-unknown:>dataflow config server --uri http://localhost:9393 --username myuser
Password:

Successfully targeted http://localhost:9393

dataflow:>]]

Figure 18.3. Target and Authenticate with the Data Flow Server from within the Shell

Customizing authorization

All of the above deals with authentication, i.e. how to assess the identity of the user. Irrespective of the
option chosen, you can also customize authorization i.e. who can do what.

The default scheme uses three roles to protect the REST endpoints that Spring Cloud Data Flow
exposes:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 42

https://github.com/spring-cloud/spring-cloud-dataflow/issues/963
http://docs.spring.io/spring-ldap/docs/current/reference/#custom-dircontext-authentication-processing
http://localhost:9393

Spring Cloud Data Flow Server for Cloud Foundry

* ROLE_VIEW for anything that relates to retrieving state

 ROLE_CREATE for anything that involves creating, deleting or mutating the state of the system

» ROLE_MANAGE for boot management endpoints.

All of those defaults are specified in dat af | ow server-defaults.ynm which is part of the
Spring Cloud Data Flow Core Module. Nonetheless, you can override those, if desired, e.g. in
application.ym . The configuration takes the form of a YAML list (as some rules may have
precedence over others) and so you'll need to copy/paste the whole list and tailor it to your needs (as
there is no way to merge lists). Always refer to your version of appl i cati on. ynl , as the snippet
reproduced below may be out-dated. The default rules are as such:

spring:
cl oud:
dat af | ow:

#

security:
aut hori zati on:
enabl ed: true
rul es:

Metrics

GET /metrics/streans

About

CET / about

Metrics

GET /metrics/**
DELETE /netrics/**

Boot Endpoi nts

GET / managenent / **
Apps

GET | apps

GET | apps/ **
DELETE / apps/ **
POST / apps

POST [/ apps/**

Conpl eti ons

GET /conpl etions/ **

Job Executions & Batch Job Execution Steps &% Job Step Execution Progress

GET /j obs/ executi ons
PUT /j obs/ execut i ons/ **
GET /j obs/ execut i ons/ **
Bat ch Job | nstances

GET /'j obs/ i nstances
GET /j obs/i nst ances/ *

Runni ng Appl i cations

CET /runti nme/ apps
GET /runti ne/ apps/ **

Stream Definitions

=>

hasRol e(' ROLE_VI EW)

hasRol e(' ROLE_VI EW)

hasRol e(' ROLE_VI EW)
hasRol e(' ROLE_CREATE')

hasRol e(' ROLE_MANAGE')

hasRol e(' ROLE_VI EW)
hasRol e(' ROLE_VI EW)
hasRol e(' ROLE_CREATE')
hasRol e(' ROLE_CREATE')
hasRol e(' ROLE_CREATE')

hasRol e(' ROLE_CREATE')

hasRol e(' ROLE_VI EW)
hasRol e(' ROLE_CREATE')
hasRol e(' ROLE_VI EW)

hasRol e(' ROLE_VI EW)
hasRol (' ROLE_VI EW)

hasRol e(' ROLE_VI EW)
hasRol e(' ROLE_VI EW)

1.2.3.BUILD-SNAPSHOT

Spring Cloud Data Flow
Server for Cloud Foundry

43

Spring Cloud Data Flow Server for Cloud Foundry

- GET / streans/ definitions => hasRol e(' ROLE_VI EW)
- GET / streans/definitions/* => hasRol e(' ROLE_VI EW)
- CGET /streans/definitions/*/related => hasRole(' ROLE_VI EW)
- POST /streans/definitions => hasRol e(' ROLE_CREATE')
- DELETE /streans/definitions/* => hasRol e(' ROLE_CREATE')
- DELETE /streans/definitions => hasRol e(' ROLE_CREATE')

Stream Depl oynent s

- DELETE /streans/ depl oynent s/ * => hasRol e(' ROLE_CREATE')
- DELETE /streans/ depl oynent s => hasRol e(' ROLE_CREATE')
- POST /streans/depl oynents/* => hasRol e(' ROLE_CREATE')

Task Definitions

- POST /tasks/definitions => hasRol e(' ROLE_CREATE')
- DELETE /tasks/definitions/* => hasRol e(' ROLE_CREATE')
- CGET /tasks/ definitions => hasRol e(' ROLE_VI EW)
- GET /tasks/ definitions/* => hasRol e(' ROLE_VI EW)

Task Executions

- CGET / t asks/ execut i ons => hasRol e(' ROLE_VI EW)
- CGET / t asks/ execut i ons/ * => hasRol e(' ROLE_VI EW)
- POST /tasks/executions => hasRol e(' ROLE_CREATE'")
- DELETE /tasks/executions/* => hasRol e(' ROLE_CREATE')

The format of each line is the following:

HTTP_METHOD URL_PATTERN ' =>' SECURI TY_ATTRI BUTE

where
« HTTP_METHOD is one http method, capital case
* URL_PATTERN is an Ant style URL pattern

* SECURITY_ATTRIBUTE is a SpEL expression (see docs.spring.io/spring-security/site/docs/current/
reference/htmisingle/#el-access)

» each of those separated by one or several blank characters (spaces, tabs, etc.)

Be mindful that the above is indeed a YAML list, not a map (thus the use of '-' dashes at the start of each
line) that lives under the spri ng. cl oud. dat af | ow. security. aut hori zati on. rul es key.

c; Tip
In case you are solely interested in authentication but not authorization, for instance

every user shall have have access to all endpoints, then you can also set
spring. cl oud. dat af | ow. security. aut hori zati on. enabl ed=f al se.

If you are using basic security configuration by using security properties then it is important to set the
roles for the users.

For instance,

java -jar spring-cloud-dataflow server-|ocal/target/spring-cloud-dataflow server-I|ocal -1.2. 3. BU LD
SNAPSHOT. j ar \

--security. basic. enabl ed=true \

--security.user.nanme=test \

--security.user.password=pass \

--security.user.rol e=VI EW

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 44

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#el-access
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#el-access

Spring Cloud Data Flow Server for Cloud Foundry

Authorization - Shell and Dashboard Behavior

When authorization is enabled, the Dashboard and the Shell will be role-aware, meaning that depending
on the assigned role(s), not all functionality may be visible.

For instance, Shell commands, for which the user does not have the necessary roles for, will be marked
as unavailable.

@ Important

Currently, the Shell’'s hel p command will list commands that are unavailable. Please track the
following issue: github.com/spring-projects/spring-shell/issues/115

Similarly for the Dashboard, the Ul will not show pages, or page elements, for which the user is not
authorized for.

Authorization with Ldap

When configuring Ldap for authentication, you can also specify the group-rol e-attribute in
conjunction with gr oup- sear ch- base and gr oup-search-filter.

The group role attribure contains the name of the role. If not specified, the ROLE_MANAGE role is
populated by default.

For further information, please refer to Configuring an LDAP Server of the Spring Security reference
guide.

18.3 OAuth 2.0

OAuth 2.0 allows you to integrate Spring Cloud Data Flow into Single Sign On (SSO) environments.
The following 3 OAuth2 Grant Types will be used:

» Authorization Code - Used for the GUI (Browser) integration. You will be redirected to your OAuth
Service for authentication

» Password - Used by the shell (And the REST integration), so you can login using username and
password

» Client Credentials - Retrieve an Access Token directly from your OAuth provider and pass it to the
Dataflow server using the Authorization Http header.

The REST endpoints can be accessed using 2 ways:

» Basic Authentication which will use the Password Grant Type under the covers to authenticate with
your OAuth2 service

» Access Token which will use the Client Credentials Grant Type under the covers

@ Note

When authentication is set up, it is strongly recommended to enable HTTPS as well, especially
in production environments.

You can turn on OAuth2 authentication by adding the following to appli cation.ym or via
environment variables:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 45

https://github.com/spring-projects/spring-shell/issues/115
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#loading-authorities
https://oauth.net/2/

Spring Cloud Data Flow Server for Cloud Foundry

security:
oaut h2:
client:
client-id: myclient O
client-secret: nysecret
access-token-uri: http://127.0.0.1: 9999/ oaut h/ t oken
user -aut hori zation-uri: http://127.0.0.1: 9999/ oaut h/ aut hori ze
resource:
user-info-uri: http://127.0.0.1: 9999/ me

0 Providing the Client Id in the OAuth Configuration Section will activate OAuth2 security

You can verify that basic authentication is working properly using curl:

$ curl -u nyusername: nypassword http://|ocal host: 9393/

As a result you should see a list of available REST endpoints.

Besides Basic Authentication, you can also provide an Access Token in order to access the REST Api.
In order to make that happen, you would retrieve an OAuth2 Access Token from your OAuth2 provider
first, and then pass that Access Token to the REST Api using the Authorization Http header:

$ curl -H "Authorization: Bearer <ACCESS_TOKEN>" http://|ocal host: 9393/

OAuth REST Endpoint Authorization

The OAuth2 authentication option uses the same authorization rules as used by the Traditional
Authentication option.

o
The authorization rules are defined in dat af | ow server - def aul t s. ym (Part of the Spring

Cloud Data Flow Core Module). Please see the chapter on customizing authorization for more
details.

Due to fact that the determination of security roles is very environment-specific, Spring
Cloud Data Flow will by default assign all roles to authenticated OAuth2 users using the
Def aul t Dat af | owAut hori ti esExtract or class.

You can customize that behavior by providing your own Spring bean definition that extends Spring
Security OAuth’s Aut hori ti esExt ract or interface. In that case, the custom bean definition will take
precedence over the default one provided by Spring Cloud Data Flow

OAuth Authentication using the Spring Cloud Data Flow Shell

If your OAuth2 provider supports the Password Grant Type you can start the Data Flow Shell with:

$ java -jar spring-cloud-dataflowshell-1.2.3.BU LD SNAPSHCT. j ar \
--dataflow uri=http://|ocal host:9393 \
- -dat af | ow. user name=ny_user nane --dat af | ow. passwor d=ny_passwor d

@ Note

Keep in mind that when authentication for Spring Cloud Data Flow is enabled, the underlying
OAuth2 provider must support the Password OAuth2 Grant Type, if you want to use the Shell.

From within the Data Flow Shell you can also provide credentials using:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 46

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow config server --uri http://local host:9393 --usernanme ny_usernanme --password ny_password

Once successfully targeted, you should see the following output:

dat af | ow. >dat af | ow config info
datafl ow config info

#Cr edent i al s#[user nane=' ny_user nane, password=****']#

#Resul t # #
#Tar get #http://1 ocal host: 9393 #

OAuth2 Authentication Examples

Local OAuth2 Server

With Spring Security OAuth you can easily create your own OAuth2 Server with the following 2 simple
annotations:

* @EnableResourceServer
* @EnableAuthorizationServer
A working example application can be found at:

https://github.com/ghillert/oauth-test-server/

Simply clone the project, built and start it. Furthermore configure Spring Cloud Data Flow with the
respective Client Id and Client Secret.

Authentication using GitHub

If you rather like to use an existing OAuth2 provider, here is an example for GitHub. First you need to
Register a new application under your GitHub account at:

https://github.com/settings/developers

When running a default version of Spring Cloud Data Flow locally, your GitHub configuration should
look like the following:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 47

http://projects.spring.io/spring-security-oauth/
https://github.com/ghillert/oauth-test-server/
https://github.com/settings/developers

Spring Cloud Data Flow Server for Cloud Foundry

Application name

Spring Cloud Data Flow
Something users will recognize and trust
Homepage URL

http:Mocalhost:8393/
The full URL to your application homepage
Application description

Spring Cloud Data Flow

#
This is displayed to all potential users of your application

Authorization callback URL

http:/Mocalhest:3393/ogin

Your application's callback URL. Read our OAuth documentation for more information.

Delete application

Figure 18.4. Register an OAuth Application for GitHub

@ Note

For the Authorization callback URL you will enter Spring Cloud Data Flow’s Login URL, e.g.
[ocal host : 9393/ 1 ogi n.

Configure Spring Cloud Data Flow with the GitHub relevant Client Id and Secret:

security:
oaut h2:
client:
client-id: your-github-client-id
client-secret: your-github-client-secret
access-token-uri: https://github.conllogin/oauth/access_token
user-aut hori zation-uri: https://github.conllogin/oauth/authorize
resour ce:
user-info-uri: https://api.github.confuser

@ Important

GitHub does not support the OAuth2 password grant type. As such you cannot use the Spring
Cloud Data Flow Shell in conjunction with GitHub.

18.4 Securing the Spring Boot Management Endpoints

When enabling security, please also make sure that the Spring Boot HTTP Management Endpoints
are secured as well. You can enable security for the management endpoints by adding the following
toapplication.ym:

managenent :
cont ext Pat h: / managenent

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 48

http://localhost:9393/login
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-monitoring.html

Spring Cloud Data Flow Server for Cloud Foundry

enabl ed: true

@ Important

If you don't explicitly enable security for the management endpoints, you may end up having
unsecured REST endpoints, despite securi ty. basi c. enabl ed being settotr ue.

‘ security:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 49

Spring Cloud Data Flow Server for Cloud Foundry

19. Monitoring and Management

The Spring Cloud Data Flow server is a Spring Boot application that includes the Actuator library, which
adds several production ready features to help you monitor and manage your application.

The Actuator library adds http endpoints under the context path / managenent that is also a discovery
page for available endpoints. For example, there is a heal t h endpoint that shows application health
information and an env that lists properties from Spring’s Conf i gur abl eEnvi r onnment . By default
only the health and application info endpoints are accessible. The other endpoints are considered to
be sensitive and need to be enabled explicitly via configuration. If you are enabling sensitive endpoints
then you should also secure the Data Flow server’s endpoints so that information is not inadvertently
exposed to unauthenticated users. The local Data Flow server has security disabled by default, so all
actuator endpoints are available.

The Data Flow server requires a relational database and if the feature toggled for analytics is enabled,
a Redis server is also required. The Data Flow server will autoconfigure the DataSourceHealthIndicator
and RedisHealthindicator if needed. The health of these two services is incorporated to the overall health
status of the server through the heal t h endpoint.

19.1 Spring Boot Admin

A nice way to visualize and interact with actuator endpoints is to incorporate the Spring Boot Admin
client library into the Spring Cloud Data Flow server. You can create the Spring Boot Admin application
by following a few simple steps.

A simple way to have the Spring Cloud Data Flow server be a client to the Spring Boot Admin Server is
by adding a dependency to the Data Flow server's Maven pom.xml file and an additional configuration
property as documented in Registering Client Applications. You will need to clone the github repository
for the Spring Cloud Data Flow server in order to modify the Maven pom. There are tags in the repository
for each release.

Adding this dependency will result in a Ul with tabs for each of the actuator endpoints.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 50

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-customizing-endpoints
https://github.com/spring-projects/spring-boot/blob/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/blob/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RedisHealthIndicator.java
https://github.com/codecentric/spring-boot-admin
http://codecentric.github.io/spring-boot-admin/1.4.3/#set-up-admin-server
http://codecentric.github.io/spring-boot-admin/1.4.3/#register-clients-via-spring-boot-admin

Spring Cloud Data Flow Server for Cloud Foundry

Q] Sprlng @ APPLICATIONS ~ JOURNAL ABOUT

spring -cloud-dataflow-server-local http://feynman:9393/management/health ¢
http://feynman:9393/management &

" - _ ' ““eynman:9393 #
i Details BlLog Ll Metrics ZEnvironment +Logging O IMX EThreads @Trace SeHeapdump

c £ T sec

app name:spring-cloud-starter-dataflow-server-local Application up
version: 1.1.0.M2
description: Local Data Flow Server Starter
DiskSpace uP
git commit:
time: '2016-10-18T15:56:26.000Z' Free 16.1G6
id: 4285340
branch: master Threshold Hen
Redis UpP
Version 28.17
Db UP
Database H2
Hello)
RefreshScope uUp
ConfigServer
JVM
Memory (1G / 1.1G) Uptime 00:00:01:01 [d:h:m:s]
Systemload 0.85 (last min. e rung-sz)
Heap Memory (953.4M / 1.1G)
86.40% Available Processors 2

Figure 19.1. Spring Boot Admin Ul

Additional configuration is required to interact with IMX beans and logging levels. Refer to the Spring
Boot admin documentation for more information. As only the i nf o and heal t h endpoints are available
to unauthenticated users, you should enable security on the Data Flow Server and also configure Spring
Boot Admin server’s security so that it can securely access the actuator endpoints.

19.2 Monitoring Deployed Applications

The applications that are deployed by Spring Cloud Data Flow are based on Spring Boot which contains
several features for monitoring your application in production. Each deployed application contains
several web endpoints for monitoring and interacting with Stream and Task applications.

In particular, the / netrics endpoint contains counters and gauges for HTTP requests, System
Metrics (such as JVM stats), DataSource Metrics and Message Channel Metrics (such as message
rates). Spring Boot lets you add your own metrics to the / net ri ¢cs endpoint either by registering an
implementation of the Publ i cMet ri cs interface or through it's integration with Dropwizard.

The Spring Boot interfaces Met ri cW i t er and Export er are used to send the metrics data to a place
where they can be displayed and analyzed. There are implementations in Spring Boot to export metrics
to Redis, Open TSDB, Statsd, and JMX.

There are a few additional Spring projects that provide support for sending metrics data to external
systems.

» Spring Cloud Stream provides Appl i cati onMet ri csExport er which publishes metrics via an
Emitter to a messaging middleware destination.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 51

http://codecentric.github.io/spring-boot-admin/1.4.3/#_securing_spring_boot_admin_server
http://codecentric.github.io/spring-boot-admin/1.4.3/#_securing_spring_boot_admin_server
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-system-metrics
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-system-metrics
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-datasource-metrics
http://docs.spring.io/spring-integration/reference/htmlsingle/#mgmt-channel-features
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-public-metrics
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-dropwizard-metrics
http://cloud.spring.io/spring-cloud-stream/
https://github.com/spring-cloud/spring-cloud-stream/blob/v1.2.1.RELEASE/spring-cloud-stream-metrics/src/main/java/org/springframework/cloud/stream/metrics/config/Emitter.java

Spring Cloud Data Flow Server for Cloud Foundry

» Spring Cloud Data Flow Metrics Collector subscribes to the metrics destination and aggregates metric
messages published by the Spring Cloud Stream applications. It has an HTTP endpoint to access
the aggregated metrics.

» Spring Cloud Data Flow Metrics provides LogMet ri cW i t er that writes to the log.

» Spring Cloud Data Flow Metrics Datadog Metrics provides Dat adogMet ri cW i t er that writes to
Datadog.

The Spring Cloud Stream Emitter is used by the Spring Cloud Stream App Starters project that provides
the most commonly used applications when creating Data Flow Streams.

The architecture when using Spring Cloud Stream’s Eni t t er , the Data Flow Metrics Collector, and the
Data Flow server is shown below.

Messaging middleware

Ul
R htt
S p Metrics
http P SIS } { Collector
7
7
Shell

Figure 19.2. Spring Cloud Data Flow Metrics Architecture

As with the App Starters, there is a Spring Boot uber jar artifact of the Metrics Collector for all of the
supported binders. You can find more information on building and running the Metrics Collector on its

project page.

The dataflow server now accepts an optional property
spring. cl oud. datafl ow. netrics. col |l ector. uri,this property should point to the URI of your
deployed metrics collector app. For example, if you are running the metrics collector locally on port 8080
then start the server (local example) with the following command:

$ java -jar spring-cloud-datafl ow server-Ilocal-1.2.3. BU LD SNAPSHOT. j ar - -
spring. cl oud. dat af | ow. metrics. col l ector.uri=http://Iocal host: 8080

The Metrics Collector can be secured with ‘basic’ authentication that
requires a username and password. To set the wusername and password,
use the properties spring. cl oud. dat afl ow. netrics. col | ect or. user name and
spring. cl oud. datafl ow. netrics. col | ector. password.

The metrics for each application are published when the property
spring. cl oud. st ream bi ndi ngs. appl i cati onMetrics. desti nati onis set. This can be set

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 52

https://github.com/spring-cloud/spring-cloud-dataflow-metrics-collector
https://github.com/spring-cloud/spring-cloud-dataflow-metrics
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
https://www.datadoghq.com/
http://docs.spring.io/spring-cloud-stream/docs/Chelsea.SR1/reference/htmlsingle/index.html#_metrics_emitter
http://cloud.spring.io/spring-cloud-stream-app-starters/
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-collector

Spring Cloud Data Flow Server for Cloud Foundry

as any other application property when deploying an application in Data Flow. Since it is quite common
to want all applications in a stream to emit metrics, setting it at the Data Flow server level is a good
way to achieve that.

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destinati on=netrics

Using the destination name et r i ¢s is a good choice as the Metrics Collector subscribes to that name
by default.

The next most common way to configure the metrics destination is using deployment properties. Here
is an example for the t i ckt ock stream that uses the App Starters t i ne and | og applications.

app register --nanme tinme --type source --uri maven://org.springframework. cl oud. stream app: ti me-source-
rabbit: 1. 2. 0. RELEASE

app register --nanme log --type sink --uri maven://org.springframework. cl oud. stream app: | 0g- si nk-
rabbit: 1.2. 0. RELEASE

stream create --name foostream--definition "time | |og"

stream depl oy --nanme foostream --
properties "app.*.spring.cloud. stream bi ndi ngs. applicati onMetrics. destination=netrics, depl oyer.*. count =2"

The Metrics Collector exposes aggregated metrics under the HTTP endpoint/ col | ector/ metri csin
JSON format. The Data Flow server accesses this endpoint in two distinct ways. The first is by exposing
a/metrics/streans HTTP endpoint that acts as a proxy to the Metrics Collector endpoint. This is
accessed by the Ul when overlaying message rates on the Flo diagrams for each stream. It is also
accessed to enrich the Data Flow / r unt i me/ apps endpoint that is exposed in the Ul via the Runt i e
tab and in the shell through the runt i me apps command with message rates.

‘ ;) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams.

Definitions Create Stream

© Expand All @ Collapse All Filter definitions
Actions
v TimeLog time | log deployed
200 (e

. ED)

‘ B time = = log

(2.00]
Qo0 @])
Guid 13057

Incoming 1.000
Figure 19.3. Stream Message Rates

By default, Data Flow will set the property

spring. cloud. stream netrics. properti es=spring. application. nanme, spring. application.index, spring.cloud.application.*, spring.c

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 53

Spring Cloud Data Flow Server for Cloud Foundry

Which is the set of application properties values needed to perform aggregation. It will also set the
property

spring. netrics.export.triggers.application.includes=integration**"

since Data Flow will only display instantaneous input and output channel message rates. By default,
all metric values in the / met ri ¢ endpoint are sent so restricting it reduces the size of the message
payload without impacting the functionality. Data Flow also exposes a gui d property when displaying
metric data which is used track back to the specific application instance that generated the metric. The
gui d value is platform dependent.

Note that you can override these defaults by setting then as you would any application property value.

Data Flow will not provide it's own implementation to store and visualize historical metrics data. We
will integrate with existing ALM system by providing an Exporter application that consumes messages
from the same destination as the Metrics Collector and writes them to an existing ALM system. Which
specific ALM system we will support is driven by user demand. However, to serve as an example, we
will develop an Elastic Search exporter with a Grafana front end since it is open source.

19.3 Log and DataDog MetricWriter

If you prefer to have deployed applications bypass the centralized collection of metrics via the Metrics
Collector, you can use the MetricWriters in Spring Cloud Data Flow Metrics and Spring Cloud Data Flow
Metrics Datadog Metrics.

The Data Flow Metrics project provides the foundation for exporting Spring Boot metrics via
MetricWriters. It provides Spring Boots AutoConfiguration to setup the writing process and common
functionality such as defining a metric name prefix appropriate for your environement. For example, you
may want to includes the region where the application is running in addition to the application’s name
and stream/task to which it belongs. It also includes a LogMet ri cW i t er so that metrics can be stored
into the log file. While very simple in approach, log files are often ingested into application monitoring
tools (such as Splunk) where they can be further processed to create dashboards of an application’s
performance.

To make use of this functionality, you will need to add additional dependencies into your Stream and
Task applications. To customize the "out of the box" Task and Stream applications you can use the
Data Flow Initializr to generate a project and then add to the generated Maven pom file the MetricWriter
implementation you want to use. The documentation on the Data Flow Metrics project pages provides
the additional information you need to get started.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 54

https://github.com/spring-cloud/spring-cloud-dataflow-metrics
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
http://start-scs.cfapps.io/

Part V. Shell

In this section you will learn about the options for starting the Shell and more advanced functionality
relating to how it handles white spaces, quotes, and interpretation of SpEL expressions. The introductory
chapters to the Stream DSL and Composed Task DSL is a good place to start for the most common
usage of shell commands.

Spring Cloud Data Flow Server for Cloud Foundry

20. Shell Options

The Shell is built upon the Spring Shell project. There are command line options generic to Spring Shell
and some specific to Data Flow. The shell takes the following command line options

Data Fl ow Options:
--datafl ow. uri=<uri>
| ocal host: 9393] .
- - dat af | ow. user name=<USER>
- - dat af | ow. passwor d=<PASSWORD>
--dat afl ow. credenti al s- provi der - command=<COMVAND>
QAut h Access Token [no defaul t].
- -dat af | ow. ski p-ssl -val i dati on=<true|fal se>
[defaul t: no].
--spring. shel |l . hi storySi ze=<S| ZE>
--spring.shell.commandFi | e=<FI LE>
file(s) and then exits.
--hel p

uni x: >j ava -jar spring-cloud-datafl owshell-1.2.1. RELEASE. jar --help

Address of the Data Flow Server [default: http://
Usernane of the Data Fl ow Server [no default].
Password of the Data Flow Server [no default].

Execut es an external command whi ch nmust return an
Accept any SSL certificate (even self-signed)

Default size of the shell
Data Fl ow Shel |

log file [default: 3000].
execut es commands read fromthe

Thi s nessage.

The spring. shel | . commandFi | e option is of note, as it can be used to point to an existing file which
contains all the shell commands to deploy one or many related streams and tasks. This is useful when
creating some scripts to help automate the deployment.

There is also a shell command

dat af | ow: >script --file <YOUR AWESOVE_SCRI PT>

This is useful to help modularize a complex script into multiple indepenent files.

Spring Cloud Data Flow

1.2.3.BUILD-SNAPSHOT

Server for Cloud Foundry

56

https://projects.spring.io/spring-shell/

Spring Cloud Data Flow Server for Cloud Foundry

21. Listing available commands

Typing hel p atthe command prompt will give a listing of all available commands. Most of the commands
are for Data Flow functionality, but a few are general purpose.

I - Allows execution of operating system (0S) comnmands
clear - Cears the console

cls - Clears the console

date - Displays the local date and tine

exit - Exits the shell

http get - Make GET request to http endpoi nt

http post - POST data to http endpoi nt

quit - Exits the shell

system properties - Shows the shell's properties
version - Displays shell version

Adding the name of the command to hel p will display additional information on how to invoke the
command.

dat af | ow: >hel p stream create
Keywor d: stream create
Descri ption: Create a new streamdefinition
Keywor d: ** default **
Keywor d: nane
Hel p: the nane to give to the stream
Mandat ory: true
Default if specified: ' NuLL_
Default if unspecified: '__ NULL__'
Keywor d: definition
Hel p: a streamdefinition, using the DSL (e.g. "http --port=9000 | hdfs")
Mandat ory: true
Default if specified: ' NuLL_
Default if unspecified: '__ NULL_ '
Keywor d: depl oy
Hel p: whet her to deploy the stream i mmediately
Mandat ory: fal se
Default if specified: "true'
Default if unspecified: 'false'

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 57

Spring Cloud Data Flow Server for Cloud Foundry

22. Tab Completion

The shell command options can be completed in the shell by hitting the TAB key after the leading - - .
For example, hitting TAB after st r eam creat e -- resultsin

dat af | ow. >stream create --
stream create --definition stream create --nane

If you type - - de and then hit tab, - - def i ni ti on will be expanded.

Tab completion is also available inside the stream or composed task DSL expression for application
or task properties. You can also use TAB to get hints in a stream DSL expression for what available
sources, processors, or sinks can be used.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 58

Spring Cloud Data Flow Server for Cloud Foundry

23. White space and quote rules

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor is being passed a SpEL expression that will be applied to any data it encounters:

transform --expressi on='new StringBuil der (payl oad).reverse()"'

If the parameter value needs to embed a single quote, use two single quotes:

/'l Query is: Select * from/Custoners where nanme=' Smith'
scan --query='Select * from/Custonmers where nane=''Smth' "'

23.1 Quotes and Escaping

There is a Spring Shell based client that talks to the Data Flow Server that is responsible for parsing
the DSL. In turn, applications may have applications properties that rely on embedded languages, such
as the Spring Expression Language.

The shell, Data Flow DSL parser, and SpEL have rules about how they handle quotes and how syntax
escaping works. When combined together, confusion may arise. This section explains the rules that
apply and provides examples of the most complicated situations you will encounter when all three
components are involved.

@ It's not always that complicated

If you don't use the Data Flow shell, for example you're using the REST API directly, or if
applications properties are not SpEL expressions, then escaping rules are simpler.

Shell rules

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

» a shell command is made of keys (- - f 00) and corresponding values. There is a special, key-less
mapping though, see below

» avalue can not normally contain spaces, as space is the default delimiter for commands

» spaces can be added though, by surrounding the value with quotes (either single ['] or double ["]
quotes)

« if surrounded with quotes, a value can embed a literal quote of the same kind by prefixing it with a
backslash (\)

» Other escapes are available, suchas\t,\n,\r,\ f and unicode escapes of the form \ uxxxx

 Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the shell supports the ! command to execute native shell commands. The ! accepts a
single, key-less argument. This is why the following works:

datafl ow. > rmfoo

The argument here is the whole r m f 0o string, which is passed as is to the underlying shell.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 59

Spring Cloud Data Flow Server for Cloud Foundry

As another example, the following commands are strictly equivalent, and the argument value is f oo
(without the quotes):

dat af | ow. >stream destroy foo

dat af | ow: >stream destroy --name foo
dat af | ow. >stream destroy "foo"

dat af | ow. >stream destroy --nanme "foo0"

DSL parsing rules

At the parser level (that is, inside the body of a stream or task definition) the rules are the following:
» option values are normally parsed until the first space character

 they can be made of literal strings though, surrounded by single or double quotes

» To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the - - expr essi on option to the filter application are semantically equivalent
in the following examples:

filter --expression=payl oad>5
filter --expression="payl oad>5"
filter --expression='payl oad>5
filter --expression='payload > 5

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payl oad > 5 (without quotes).

Now, let's imagine we want to test against string messages. If we'd like to compare the payload to the
SpEL literal string, " f 00", this is how we could do:

filter --expression=payl oad=='f o0’ O
filter --expression='payload == "'foo' "' O
filter --expression='payload == "foo"' O

0 This works because there are no spaces. Not very legible though

0 This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

0 But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the shell, for example if when
calling the REST API directly. When entered inside the shell, chances are that the whole stream
definition will itself be inside double quotes, which would need escaping. The whole example then
becomes:

dat af | ow. >stream create foo --definition "http | filter --expression=payload='foo' | |o0g"
dat af | ow. >stream create foo --definition "http | filter --expression='payload == "''foo''' | |o0g"
dat af | ow. >stream create foo --definition "http | filter --expression='payload == \"foo\"' | |o0g"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many applications accept options that are to
be interpreted as SpEL expressions, and as seen above, String literals are handled in a special way
there too. The rules are:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 60

Spring Cloud Data Flow Server for Cloud Foundry

« literals can be enclosed in either single or double quotes

» quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As a last example, assume you want to use the transform processor. This processor accepts an
expr essi on option which is a SpEL expression. It is to be evaluated against the incoming message,
with a default of payl oad (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform - -expressi on=payl oad
transform --expressi on=' payl oad'

but very different from the following:

transform --expressi on=""'payl oad" "
transform --expression="""'payload "'

and other variations.

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string pay!| oad (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hel | o wor | d, by creating a stream in the context of the Data Flow shell:

dat af | ow: >stream create foo --definition "http | transform--expression="""hello world'' | log" O
dat af | ow. >stream create foo --definition "http | transform--expression="\"hello world\"' | log" O
dat af | ow: >stream create foo --definition "http | transform--expression=\""hello world'\" | log" O

0 This uses single quotes around the string (at the Data Flow parser level), but they need to be
doubled because we're inside a string literal (very first single quote after the equals sign)

OO use single and double quotes respectively to encompass the whole string at the Data Flow parser
level. Hence, the other kind of quote can be used inside the string. The whole thing is inside the
--defini ti on argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level)

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 61

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-processors.html#spring-clound-stream-modules-transform-processor

Part VI. Streams

This section goes into more detail about how you can create Streams which are a collection of Spring
Cloud Stream. It covers topics such as creating and deploying Streams.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Cloud Foundry

24. Introduction

Streams are a collection of long lived Spring Cloud Stream applications that communicate with each
other over messaging middleware. A text based DSL defines the configuration and data flow between
the applications. While many applications are provided for you to implement common use-cases, you
will typically create a custom Spring Cloud Stream application to implement custom business logic.

24.1 Stream Pipeline DSL

A stream is defined using a unix-inspired Pipeline syntax. The syntax uses vertical bars, also known as
"pipes" to connect multiple commands. The command s -1 | grep key | |ess in Unix takes
the output of the | s -1 process and pipes it to the input of the grep key process. The output of
gr ep in turn is sent to the input of the | ess process. Each | symbol will connect the standard ouput
of the program on the left to the standard input of the command on the right. Data flows through the
pipeline from left to right.

In Data Flow, the Unix command is replaced by a Spring Cloud Stream application and each pipe
symbol represents connecting the input and output of applications via messaging middleware, such as
RabbitMQ or Apache Kafka.

Each Spring Cloud Stream application is registered under a simple name. The registration process
specifies where the application can be obtained, for example in a Maven Repository or a Docker registry.
You can find out more information on how to register Spring Cloud Stream applications in this section.
In Data Flow, we classify the Spring Cloud Stream applications as either Sources, Processors, or Sinks.

As a simple example consider the collection of data from an HTTP Source writing to a File Sink. Using
the DSL the stream description is:

‘http| file

A stream that involves some processing would be expresed as:

‘http| filter | transform| file

Stream definitions can be created using the shell's cr eat e st r eamcommand. For example:

dat af | ow. > stream create --name httplngest --definition "http | file"

The Stream DSL is passed in to the - - def i ni ti on command option.

The deployment of stream definitions is done via the shell's st r eam depl oy command.

dat af | ow. > stream depl oy --nane ticktock

The Getting Started section shows you how to start the server and how to start and use the Spring
Cloud Data Flow shell.

Note that shell is calling the Data Flow Servers' REST API. For more information on making HTTP
request directly to the server, consult the REST API Guide.

24.2 Application properties

Each application takes properties to customize its behavior. As an example the ht t p source module
exposes a port setting which allows the data ingestion port to be changed from the default value.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 63

http://cloud.spring.io/spring-cloud-stream/
https://en.wikipedia.org/wiki/Pipeline_(Unix)
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Cloud Foundry

datafl ow. > stream create --definition "http --port=8090 | |o0g" --nane nyhttpstream

This port property is actually the same as the standard Spring Boot ser ver . port property. Data
Flow adds the ability to use the shorthand form port instead of ser ver. port. One may also specify
the longhand version as well.

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nane nyhttpstream

This shorthand behavior is discussed more in the section on the section called “Whitelisting application
properties”. If you have registered application property metadata you can use tab completion in the shell
after typing - - to get a list of candidate property names.

The shell provides tab completion for application properties and also the shell command app i nfo
<appType>: <appNane> provides additional documentation for all the supported properties.

@ Note

Supported Stream “<appType>'s are: source, processor, and sink

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 64

Spring Cloud Data Flow Server for Cloud Foundry

25. Lifecycle of Streams

25.1 Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow: >app regi ster --nane nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow: >app regi ster --name nyprocessor --type processor --uri file:///Users/exanple/
nmyprocessor-1.2.3.jar

dat af | ow: >app regi ster --nanme nysink --type sink --uri http://exanple.conm nysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactl| d>[: <extensi on>[:<cl assifier>]]:<version>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow. >app regi ster --name http --type source --uri maven://

org. springfranewor k. cl oud. stream app: htt p- source-rabbit: 1. 2. 1. BUl LD- SNAPSHOT

dat af | ow: >app regi ster --nane log --type sink --uri maven://org.springfranmework. cloud. stream app: | og-
si nk-rabbit:1.2. 1. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nane> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // org. spri ngfranmewor k. cl oud. stream app: htt p-source-rabbit: 1. 2. 1. BUl LD- SNAPSHOT
si nk. | og=maven://org. springframework. cl oud. stream app: | og- si nk-rabbi t: 1. 2. 1. BUl LD- SNAPSHOT

Then to import the apps in bulk, use the app i nmport command and provide the location of the
properties file via - - uri :

dat af | ow. >app inport --uri file:///<YOUR_FILE_LOCATI ON>/ stream apps. properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release
RabbitMQ + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-rabbit-maven SNAPSHOT-stream-

applications-rabbit-maven

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 65

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven

Spring Cloud Data Flow Server for Cloud Foundry

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-rabbit-docker

Kafka 0.9 + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-kafka-09-maven SNAPSHOT-stream-
applications-kafka-09-maven

Kafka 0.9 + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-kafka-09-docker

Kafka 0.10 + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-kafka-10-maven SNAPSHOT-stream-
applications-kafka-10-maven

Kafka 0.10 + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-kafka-10-docker

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release
Maven bit.ly/Belmont-GA-task- bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker bit.ly/Belmont-GA-task- N/A

applications-docker

You can find more information about the available task starters in the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dat af | ow: >app inport --uri http://bit.|y/Bacon- RELEASE- stream applicati ons-rabbit-maven

You can also pass the - - | ocal option (which is t r ue by default) to indicate whether the properties file
location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

0 Warning

When using either app regi ster orapp inport, if an app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the
pre-existing app coordinates, then include the - - f or ce option.

Note however that once downloaded, applications may be cached locally on the Data Flow
server, based on the resource location. If the resource location doesn’t change (even though the
actual resource bytes may be different), then it won’t be re-downloaded. When using maven: / /
resources on the other hand, using a constant location still may circumvent caching (if using
- SNAPSHOT versions).

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 66

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Server for Cloud Foundry

Moreover, if a stream is already deployed and using some version of a registered app, then
(forcibly) re-registering a different app will have no effect until the stream is deployed anew.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Whitelisting application properties

Stream and Task applications are Spring Boot applications which are aware of many the section called
“Common application properties”, e.g. ser ver . port but also families of properties such as those with
the prefix spri ng. j mx and | oggi ng. When creating your own application it is desirable to whitelist
properties so that the shell and the Ul can display them first as primary properties when presenting
options via TAB completion or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi guration-netadat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @Conf i gur at i onPr oper t y class names. The second key
is confi guration-properties. nanmes whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spri ng- confi gurati on-net adata-whitelist.properties
file

configuration-properties.classes=org. springframework. cl oud. stream app.file.sink.FileSinkProperties

If we also wanted to add ser ver. port to be white listed, then it would look like this:

configuration-properties.classes=org. springframework. cl oud. stream app. file.sink. FileSinkProperties
configuration-properties. nanes=server. port

@ Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

Creating and using a dedicated metadata artifact

You can go a step further in the process of describing the main properties that your stream or task
app supports by creating a so-called metadata companion artifact. This simple jar file contains only the
Spring boot JSON file about configuration properties metadata, as well as the whitelisting file described
in the previous section.

Here is the contents of such an artifact, for the canonical | og sink:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 67

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

$ jar tvf |og-sink-rabbit-1.2.1. BUl LD- SNAPSHOT- net adat a. j ar
373848 META-| NF/ spring-configuration-netadata.json
174 META-I NF/ spring-configuration-netadata-whitelist.properties

Note that the spring-confi gurati on-mnetadata.json file is quite large. This is because it
contains the concatenation of all the properties that are available at runtime to the | og sink (some
of them come from spri ng-boot-actuator.jar, some of them come from spri ng-boot -
aut oconfi gure. jar, even some more from spri ng- cl oud- starter-streamsi nk-1o0g.j ar,
etc.) Data Flow always relies on all those properties, even when a companion artifact is not available,
but here all have been merged into a single file.

To help with that (as a matter of fact, you don’t want to try to craft this giant JSON file by hand), you
can use the following plugin in your build:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-app-starter-netadata-mven-plugin</artifactld>
<executi ons>
<execution>
<i d>aggr egat e- net adat a</ i d>
<phase>conpi | e</ phase>
<goal s>
<goal >aggr egat e- et adat a</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

@ Note

This plugin comes in addition to the spring-boot-confi guration-processor that
creates the individual JSON files. Be sure to configure the two!

The benefits of a companion artifact are manifold:

1. being way lighter (usually a few kilobytes, as opposed to megabytes for the actual app), they are
quicker to download, allowing quicker feedback when using e.g. app i nf o or the Dashboard Ul

2. as a consequence of the above, they can be used in resource constrained environments (such as
PaaS) when metadata is the only piece of information needed

3. finally, for environments that don’t deal with boot uberjars directly (for example, Docker-based
runtimes such as Kubernetes or Mesos), this is the only way to provide metadata about the properties
supported by the app.

Remember though, that this is entirely optional when dealing with uberjars. The uberjar itself also
includes the metadata in it already.

Using the companion artifact

Once you have a companion artifact at hand, you need to make the system aware of it so that it can
be used.

When registering a single app via app regi st er, you can use the optional - - met adat a- uri option
in the shell, like so:

dat af | ow: >app regi ster --nane |log --type sink
--uri maven://org.springfranmework. cl oud. stream app: | og- si nk- kaf ka- 10: 1. 2. 1. BUI LD- SNAPSHOT
--met adat a- uri =maven: // or g. spri ngf ramewor k. cl oud. st ream app: | 0og- si nk-

kaf ka- 10: j ar: net adat a: 1. 2. 1. BUl LD- SNAPSHOT

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 68

Spring Cloud Data Flow Server for Cloud Foundry

When registering several files using the app inport command, the file should contain a
<t ype>. <nane>. net adat a line in addition to each <t ype>. <nane> line. This is optional (i.e. if some
apps have it but some others don't, that's fine).

Here is an example for a Dockerized app, where the metadata artifact is being hosted in a Maven

repository (but retrieving it viahttp: // orfil e:// would be equally possible).

sour ce. ht t p=docker: spri ngcl oudstreani htt p- source-rabbit:| atest
sour ce. htt p. met adat a=maven: // or g. spri ngf ramewor k. cl oud. st ream app: ht t p- sour ce-
rabbit:jar: metadata: 1. 2. 1. BU LD- SNAPSHOT

25.2 Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the Spring
Cloud Stream documentation. It is possible to include multiple binders to an application. If doing so,
refer the instructions in the section called “Passing Spring Cloud Stream properties for the application”
on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot conf i gur at i on- pr ocessor as an optional dependency, as in the
following example.

<dependenci es>
<l-- other dependencies -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >
</ dependency>
</ dependenci es>

@ Note

Make sure that the spri ng- boot - maven- pl ugi n is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in Section 25.1, “Register
a Stream App”.

25.3 Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let's walk through what happens if we execute the following shell command:

datafl ow. > stream create --definition "time | |log" --name ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | o0g. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 69

https://github.com/spring-cloud/spring-cloud-stream
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_getting_started

Spring Cloud Data Flow Server for Cloud Foundry

Then to deploy the stream execute the following shell command (or alternatively add the - - depl oy
flag when creating the stream so that this step is not needed):

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch thet i ne
and | og applications of the stream.

2016- 06-01 09:41:21.728 | NFO 79016 --- [nio0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016- 06-01 09:41:21.914 | NFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nmD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ ti ckt ock- 1464788481910/t i ckt ock.time

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/stdout_0.|og

2016- 06-01 09:45:11.250 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:11
2016-06-01 09:45:12.250 |NFO 79194 --- [kafka-binder-] Iog.sink : 06/01/16 09:45:12
2016- 06- 01 09: 45:13.251 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:13

Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

datafl ow. > stream create --definition "tinme | 1og" --name ticktock

can have application properties defined at the time of stream creation.

The shell command app info <appType>: <appNane> displays the white-listed application
properties for the application. For more info on the property white listing refer to the section called
“Whitelisting application properties”

Below are the white listed properties for the app ti nme:

dat af | ow. > app info source:tine
HHHHHBHHHH B H A A H R R T R H R R R H T R R
Opti on Name # Description # Def aul t
Type #
#trigger.tinme-unit #The TineUnit to apply to del ay#<none>
#j ava. util.concurrent. Ti neUnit #
#val ues. #
#
#trigger.fixed-del ay #Fi xed delay for periodic #1
#j ava. | ang. | nt eger #
#triggers. #
#

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 70

Spring Cloud Data Flow Server for Cloud Foundry

#trigger.cron #Cron expression value for the #<none>
#j ava. |l ang. String #
#Cron Trigger. #
#
#trigger.initial-delay #lnitial delay for periodic #0
#] ava. | ang. | nt eger #
#triggers. #
#
#trigger. max- nessages #Maxi mum nessages per poll, -1 #1
#j ava. | ang. Long #
#means infinity. #
#
#trigger. date-fornmat #Format for the date val ue. #<none>
#j ava. |l ang. String #

Below are the white listed properties for the app | og:

dat af | ow. > app info sink:log

Option Nane # Descri ption # Def aul t

Type #
#l og. nane #The name of the | ogger to use. #<none>
#j ava.l ang. String #
#l og. | evel #The | evel at which to | og #<none>
#org. spri ngframework. i ntegrati o#
#messages.
#n. handl er. Loggi ngHandl er $Level #
#l 0og. expr essi on #A SpEL expression (against the#payl oad
#j ava.l ang. String #
#i ncom ng nessage) to eval uate #
#
#as the | ogged nmessage. #

The application properties for the t i me and | og apps can be specified at the time of st r eamcreation
as follows:

datafl ow. > stream create --definition "tinme --fixed-delay=5 | log --level =WARN" --nane ticktock

Note that the properties f i xed- del ay and | evel defined above for the appsti me and | og are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as depl oynment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count .

Application properties versus Deployer properties

Starting with version 1.2, the distinction between properties that are meant for the deployed app
and properties that govern how this app is deployed (thanks to some implementation of a spring
cloud deployer) is more explicit. The former should be passed using the syntax app. <app-
name>. <property- name>=<val ue> while the latter use the depl oyer. <app- name>. <short -
property-nane>=<val ue>

The following table recaps the difference in behavior between the two.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 71

https://github.com/spring-cloud/spring-cloud-deployer/
https://github.com/spring-cloud/spring-cloud-deployer/

Spring Cloud Data Flow Server for Cloud Foundry

Application Properties Deployer Properties
Example Syntax app.filter. expression=foodepl oyer.filter.count=3
What the application "sees" expr essi on=f 0o or <sorme- Nothing

prefi x>. expressi on=f oo
if expr essi on is one of the
whitelisted properties

What the deployer "sees" Nothing spring. cl oud. depl oyer. count =3
The

spring. cl oud. depl oyer

prefix is automatically and

always prepended to the

property name

Typical usage Passing/Overriding application Setting the number of
properties, passing Spring instances, memory, disk, etc.
Cloud Stream binder or

partitionning properties

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a deployer
property with the deploy command:

dat af | ow. > stream depl oy --nanme ticktock --properties "deployer.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f 0o. bar. count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See ?27?7.
Inline vs file reference properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "depl oyer.transform count=2, app.transform producer. partitionKeyExpressi on=payl oad"

Using afile reference
use the - - properti esFi | e option and pointitto a local . properti es,.yam or.ynl file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a . properti es file,

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 72

Spring Cloud Data Flow Server for Cloud Foundry

normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nyprops. properties

where nypr ops. properti es contains:

depl oyer. transform count =2
app. transform producer. partiti onKeyExpressi on=payl oad

Both the above properties will be passed as deployment properties for the stream f oo above.

In case of using YAML as the format for the deployment properties, use the . yam or. ynl file extention
when deploying the stream,

stream depl oy foo --propertiesFile nyprops.yan

where nypr ops. yam contains:

depl oyer:
transform
count: 2
app:
transform
producer:
partitionKeyExpression: payl oad

Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dat af | ow: >stream depl oy ticktock --properties "app.tine.fixed-del ay=5, app.| og.|evel =ERROR"

When using the app label,

streamcreate ticktock --definition "a: time | b: |og"

the application properties can be defined as:

stream depl oy ticktock --properties "app.a.fixed-del ay=4, app. b. | evel =ERROR"

Passing Spring Cloud Stream properties for the application

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spri ng. cl oud. st r eam bi ndi ngs. <i nput/
out put >. dest i nat i on is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 73

Spring Cloud Data Flow Server for Cloud Foundry

For example, for the below stream

datafl ow. > stream create --definition "http | transform --
expr essi on=payl oad. get Val ue(' hell o'). toUpperCase() | |og" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud.stream bi ndi ngs. out put. bi nder =kaf ka, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput. bi nd

@ Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per - bi ndi ng
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partiti onKeyExpression, partiti onKeyExtractorCl ass as described in
the section called “Passing stream patrtition properties during stream deployment”, all the supported
Spring Cloud Stream producer/consumer properties can be set as Spring Cloud Stream properties for
the app directly as well.

The consumer properties can be set for the inbound channel name with the prefix app.
[app/ | abel nane]. spring. cl oud. stream bi ndi ngs. <channel Nane>. consuner. and the
producer properties can be set for the out bound channel name with the prefix app. [app/
| abel nane]. spring.cloud. stream bi ndi ngs. <channel Nane>. producer . . For example,
the stream

‘dataflow> streamcreate --definition "time | |og" --nanme ticktock

can be deployed with producer/consumer properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tinme.spring.cloud.stream bi ndi ngs. out put. producer. requi redG oups=nyG oup, app. ti me. spri ng. cl oud. stream bi ndi

The bi nder specific producer/consumer properties can also be specified in a similar way.

For instance

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream rabbit.bindings. out put. producer. aut oBi ndDl g=t r ue, app. | 0g. spri ng. cl oud. stream r abbi

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 74

Spring Cloud Data Flow Server for Cloud Foundry

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default nul 1)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partiti onKeyExtractorC ass is null. If both are null, the app is not partitioned (default nul |)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default nul 1)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[next Modul €] . count . If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default nul |)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partiti onKeyExtractorCl ass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSel ectorC ass, if present, or the partitionSel ector Expression %
partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSel ectorC ass nor a partitionSel ector Expressi on is present the
result is key. hashCode() % partiti onCount.

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the i nput Type and out put Type properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dat af | ow. >stream create tuple --definition "http | filter --inputType=application/x-spring-tuple
- - expressi on=payl oad. hasFi el dName("' hello') | transform --

expr essi on=payl oad. get Val ue("' hel | o').t oUpper Case()
| 1og" --deploy

The ht t p app is expected to send the data in JSON and the fi | t er app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the i nput Type property on the filter app
to convert the data into the expected Spring Tuple format. The t r ansf or mapplication processes the
Tuple data and sends the processed data to the downstream | og application.

When sending some data to the ht t p application:

dat af | ow: >http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://
| ocal host : <htt p- port >

At the log application you see the content as follows:

‘INFO 18745 --- [transformtuple-1] |o0g. sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the - - out put Type in the upstream app or as an --i nput Type in the downstream app. For
instance, in the above stream, instead of specifying the - - i nput Type on the 'transform' application to

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 75

Spring Cloud Data Flow Server for Cloud Foundry

convert, the option - - out put Type=appl i cati on/ x-spri ng-tupl e can also be specified on the
'http' application.

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream documentation.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

datafl ow. > stream create --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

To override these application properties, one can specify the new property values during deployment:

dat af | ow: >stream depl oy ticktock --properties "app.tine.fixed-del ay=4, app.| og.|evel =ERRCR"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spri ng. cl oud. dat af | ow. appl i cati onProperties. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the Data Flow server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties.stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties spring.cloud. stream kaf ka. bi nder. brokers and
spring. cl oud. st ream kaf ka. bi nder. zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

25.4 Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

‘dataflow> stream destroy --nane ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

25.5 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by name and issue the depl oy command at a later time to restart it.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 76

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#contenttypemanagement

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow: > stream undepl oy --nane ticktock
dat af | ow. > stream depl oy --nane ticktock

1.2.3.BUILD-SNAPSHOT

Spring Cloud Data Flow
Server for Cloud Foundry

7

Spring Cloud Data Flow Server for Cloud Foundry

26. Stream DSL

This section covers additional features of the Stream DSL not covered in the Stream DSL introduction.

26.1 Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.t oUpper Case() | step2:
transform - -expressi on=payl oad+'!" | |o0g" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

1 <streaniNanme>. <| abel / appNane>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is mai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter" --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

26.2 Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!" | log" --nanme nyStreamWthLabels --depl oy

26.3 Named Destinations

Instead of referencing a source or sink applications, you can use a named destination. A named
destination corresponds to a specific destination name in the middleware broker (Rabbit, Kafka, etc.,).
When using the | symbol, applications are connected to each other using messaging middleware
destination names created by the Data Flow server. In keeping with the unix analogy, one can redirect
standard input and output using the less-than < greater-than > charaters. To specify the name of the
destination, prefix it with a colon : . For example the following stream has the destination name in the
sour ce position:

dat af | ow. >stream create --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app. You can also create additional streams that will consume data from the
same named destination.

The following stream has the destination name in the si nk position:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 78

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow. >stream create --definition "http > :nyDestination" --nanme ingest_to_broker --deploy

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

dat af | ow: >stream create --definition ":destinationl > :destination2" --nanme bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a bri dge app that
connects them.

26.4 Fan-in and Fan-out

Using named destinations, you can support Fan-in and Fan-out use cases. Fan-in use cases are when
multiple sources all send data to the same named destination. For example

s3 > :data

ftp > :data
http > :data

Would direct the data payloads from the Amazon S3, FTP, and HTTP sources to the same named
destination called dat a. Then an additional stream created with the DSL expression

:data > file
would have all the data from those three sources sent to the file sink.

The Fan-out use case is when you determine the destination of a stream based on some information
that is only known at runtime. In this case, the Router Application can be used to specify how to direct
the incoming message to one of N named destinations.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 79

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-router-sink

Spring Cloud Data Flow Server for Cloud Foundry

27. Stream applications with multiple binder
configurations

In some cases, a stream can have its applications bound to multiple spring cloud stream binders when
they are required to connect to different messaging middleware configurations. In those cases, it is
important to make sure the applications are configured appropriately with their binder configurations.
For example, let’s consider the following stream:

http | transform --expressi on=payl oad. t oUpper Case() | |og

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1l)

Transform processor receives events from Rabbit MQ (rabbitl) and sends the processed events into Kafka
(kaf kal)

Log sink receives events from Kaf ka (kaf kal)

Here, rabbit1l and kaf kal are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder
Transform - Both Kafka and Rabbit binders
Log - Kafka binder

The spring-cloud-stream bi nder configuration properties can be set within the applications themselves.
If not, they can be passed via depl oynent properties when the stream is deployed.

For example,

dat af | ow. >stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |og" --nane
nystream

dat af | ow. >stream depl oy nmystream --properties
"app. http. spring.cl oud. stream bi ndi ngs. out put . bi nder =rabbi t 1, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =r abbi
app. transform spring. cl oud. stream bi ndi ngs. out put . bi nder =kaf kal, app. | og. spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =kaf kal"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 80

Spring Cloud Data Flow Server for Cloud Foundry

28. Examples

28.1 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | l|og" --name
nyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow.> http post --target http://local host: 1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54:37.749 |NFO 80083 --- [kafka-binder-] |og.sink : HELLO

28.2 Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad. split('" ') | log"
Created new stream ' words'

dat af | ow: >stream depl oy words --properties
"app.splitter.producer. partitionKeyExpressi on=payl oad, depl oyer.| og. count =2"
Depl oyed stream ' words'

dat af | ow. >http post --target http://local host: 9900 --data "How nmuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://local host: 9900 How nmuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18:33:24.982 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og i nstance 0
Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18: 33:24.988 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words.log instance 1
Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzgqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 81

Spring Cloud Data Flow Server for Cloud Foundry

2016- 06- 05 18:35:47.047 | NFO 58639 --- [kafka-binder-] |og.sink
much
2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink
wood
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink
woul d
2016- 06-05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink :
woodchuck
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink if
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink :
woodchuck
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink
could
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink
wood

This shows that payload splits that contain the same word are routed to the same application instance.

28.3 Other Source and Sink Application Types

Let's try something a bit more complicated and swap out the t i me source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an ht t p source, but still using the same | og sink, we would change the
original command above to

dat afl ow. > stream create --definition "http | 10g" --name nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream|og instance 0
Logs will be in /var/folders/wn/ 8 xmtbdlvj28c8vj37n900nD000gn/ T/ spri ng- cl oud-
dat af | ow- 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dat af | ow. > runtinme apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow > http post --target http://|ocal host: 1234 --data "hel |l 0"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 | NFO 79654 --- [kafka-binder-] |og.sink : hello
2016- 06- 01 09: 50: 26. 810 | NFO 79654 --- [kafka-binder-] |og.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to afile (fi | e), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 82

Part VII. Tasks

This section goes into more detail about how you can work with Spring Cloud Task. It covers topics
such as creating and running task applications.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Cloud Foundry

29. Introduction

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @nabl eTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 84

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Cloud Foundry

30. The Lifecycle of a Task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Creating a Task Application

2. Registering a Task Application

3. Creating a Task Definition

4. Launching a Task

5. Reviewing Task Executions

6. Destroying a Task Definition

30.1 Creating a Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-

task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. G oud Task - This dependency is the spri ng- cl oud- starter-task.
b. JDBC - This is the dependency for the spri ng-j dbc starter.

2. Within your new project, create a new class that will serve as your main class:

@nabl eTask
@Bpr i ngBoot Appl i cati on
public class MyTask {

public static void main(String[] args) {
Spri ngApplication. run(MTask. cl ass, args);

}
}

3. With this, you'll need one or more CormandLi neRunner or Appl i cati onRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an Uber jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.
Task Database Configuration

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 85

https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its Ul, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

30.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dat af | ow: >app regi ster --nane taskl --type task --uri maven://com exanpl e: nytask: 1. 0. 2

dat af | ow. >app register --nanme task2 --type task --uri file:///Users/exanpl e/ nmytask-1.0.2.jar

dat af | ow. >app regi ster --name task3 --type task --uri http://exanple.conl nytask-1.0.2.jar
When providing a URI with the nmaven scheme, the format should conform to the following:

maven: // <groupl d>: <artifact|d>[: <extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <t ype>. <nane> and the values are the URIs. For example, this would be
a valid properties file:

task. foo=file:///tnp/foo.jar
task. bar=file:///tnp/bar.jar

Then use the app i mport command and provide the location of the properties file via - - uri :

app inport --uri file:///tnp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release
Maven http://bit.ly/Belmont-GA-task- http://bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker http://bit.ly/Belmont-GA-task- http://bit.ly/Belmont-BUILD-
applications-docker SNAPSHOT-task-applications-
docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dat af | ow: >app inport --uri http://bit.|y/Bel nont-GA-task-applications-maven

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 86

http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Server for Cloud Foundry

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster orapp i nport, ifatask app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

30.3 Creating a Task Definition

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the t ask cr eat e command to create the task definition.
For example:

dat af | ow. >t ask create nytask --definition "timestanp --format=\"yyyy\""
Created new task 'nytask’

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the t ask | i st command.

30.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the t ask | aunch command. For example:

dat af | ow: >t ask | aunch mytask
Launched task ' nytask’

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dat af | ow: >t ask | aunch mytask --argunments "--server. port=8080, --foo=bar"

Additional properties meant fora TaskLauncher itself can be passedinusinga- - pr operti es option.
Format of this option is a comma delimited string of properties prefixed with app. <t ask definition
nane>. <pr opert y>. Properties are passed to TaskLauncher as application properties and it is up
to an implementation to choose how those are passed into an actual task application. If the property is
prefixed with depl oyer instead of app it is passed to TaskLauncher as a deployment property and
its meaning may be TaskLauncher implementation specific.

dat af | ow. >t ask | aunch nmytask --properties "depl oyer.tinestanp.fool=bar1l, app.tinestanp.foo2=bar2"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting
common properties to all the task applications that are launched by it. This can be done by

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 87

Spring Cloud Data Flow Server for Cloud Foundry

adding properties prefixed with spri ng. cl oud. dat af | ow. appl i cati onProperties.task when
starting the server. When doing so, the server will pass all the properties, without the prefix, to the
instances it launches.

For example, all the launched applications can be configured to use the properties f oo and fi zz by
launching the Data Flow server with the following options:

--spring.cloud. dat af | ow. appl i cati onProperties.task.foo=bar
--spring.cloud. dat af | ow. appl i cati onProperties.task.fizz=bar2

This will cause the properties f oo=bar and fi zz=bar 2 to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than task deployment
properties. They will be overridden if a property with the same key is specified at task launch
time (e.g. app. tri gger. fi zz will override the common property).

30.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:
» Task Name

» Start Time

* End Time

+ Exit Code

» Exit Message

» Last Updated Time

» Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the t ask executi on |i st command.

To get a list of task executions for just one task definition, add - - nanme and the task definition name, for
example t ask execution list --nane foo. To retrieve full details for a task execution use the
t ask di spl ay command with the id of the task execution, for example t ask di splay --id 549.

30.6 Destroying a Task Definition

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the t ask destr oy command.
For example:

dat af | ow. >t ask destroy mnytask
Destroyed task 'nmytask’

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 88

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

This will not stop any currently executing tasks for this definition, instead it just removes the
task definition from the database.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 89

Spring Cloud Data Flow Server for Cloud Foundry

31. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spri ng- cl oud-t ask- stream
and spri ng- cl oud- st ream bi nder - kaf ka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: t ask- events, j ob-

executi on-events etc.,).

dat af | ow: >t ask create myTask --definition “nyBatchJob”
dat af | ow: >t ask | aunch nyTask
dat af | ow. >stream create task-event-subscriberl --definition ":task-events > |og" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dat af | ow: >t ask | aunch nmyTask --properties "spring.cloud. stream bi ndi ngs. t ask-
event s. desti nati on=nyTaskEvent s"
dat af | ow. >stream create task-event-subscriber2 --definition ":nmyTaskEvents > | 0g" --depl oy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 31.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events j ob- executi on-events
Step Execution events st ep- executi on-events
Item Read events itemread-events

Item Process events item process-events
Item Write events itemwite-events

Skip events ski p-events

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 20

Spring Cloud Data Flow Server for Cloud Foundry

32. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available t ask- | auncher sinks. Currently
the platforms supported via the t ask- | auncher sinks are local, Cloud Foundry, and Yarn.

@ Note

t ask- | auncher -1 ocal is meant for development purposes only.

A task-| auncher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the t ask- | auncher will obtain the URI of the artifact to be
launched as well as the environment properties, command line arguments, deployment properties and
application name to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register command as
follows (for the Rabbit Binder):

app register --name task-launcher-local --type sink --uri maven://
or g. springfranewor k. cl oud. stream app: t ask- | auncher -l ocal -si nk-rabbit:jar: 1. 2. 0. RELEASE

In the case of a maven based task that is to be launched, the task-I|auncher
application is responsible for downloading the artifact. You must configure the task-
I auncher with the appropriate configuration of Maven Properties such as --maven. r enot e-
repositories.repol.url=http://repo.spring.io/libs-mlestone" to resolve artifacts,
in this case against a milestone repo. Note that this repo can be different than the one used to register
the t ask- 1 auncher application itself.

32.1 TriggerTask

One way to launch a task using the task-I|auncher is to use the triggertask source. The
tri ggert ask source will emit a message with a TaskLaunchRequest object containing the required
launch information. The tri ggert ask can be added to the available sources by executing the app
register command as follows (for the Rabbit Binder):

app register --type source --nane triggertask --uri maven://
or g. springfranmewor k. cl oud. stream app: tri ggertask-source-rabbit:1.2. 0. RELEASE

An example of this would be to launch the timestamp task once every 60 seconds, the stream to
implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

or g. springframewor k. cl oud. t ask. app: ti mestanp-task:jar:1.2.0. RELEASE --trigger.fixed-

del ay=60 --triggertask.environnment-properties=spring.datasource.url=jdbc:h2:tcp://

| ocal host: 19092/ mem dat af | ow, spri ng. dat asour ce. user nanme=sa | task-|auncher-Ilocal --maven.renote-
repositories.repol.url =http://repo.spring.io/libs-rel ease" --deploy

If you execute runt i ne apps you can find the log file for the task launcher sink. Tailing that file you
can find the log file for the launched tasks. The setting of t ri ggert ask. envi ronnent - properties
is so that all the task executions can be collected in the same H2 database used in the local version
of the Data Flow Server. You can then see the list of task executions using the shell command t ask
execution |ist

dat af | ow: >t ask execution |ist

Task Nane #| D# Start Tinme # End Ti ne #Exit Code#
HHHH

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 91

https://github.com/spring-cloud-stream-app-starters/tasklauncher-local
https://github.com/spring-cloud-stream-app-starters/tasklauncher-cloudfoundry
https://github.com/spring-cloud-stream-app-starters/tasklauncher-yarn
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-stream/src/main/java/org/springframework/cloud/task/launcher/TaskLaunchRequest.java
https://github.com/spring-cloud-stream-app-starters/tasklauncher-local/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-sink-task-launcher-local/README.adoc
https://github.com/spring-cloud/spring-cloud-deployer/blob/master/spring-cloud-deployer-resource-maven/src/main/java/org/springframework/cloud/deployer/resource/maven/MavenProperties.java
https://github.com/spring-cloud-stream-app-starters/triggertask/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-source-triggertask/README.adoc

Spring Cloud Data Flow Server for Cloud Foundry

#ti mest anp-t ask_26176#4 #Tue May 02 12:13:49 EDT 2017#Tue May 02 12:13:49 EDT 2017#0
#ti mest anp- t ask_32996#3 #Tue May 02 12:12:49 EDT 2017#Tue May 02 12:12:49 EDT 2017#0
#ti mest anp-t ask_58971#2 #Tue May 02 12:11:50 EDT 2017#Tue May 02 12:11:50 EDT 2017#0
#ti mest anp-task_13467#1 #Tue May 02 12:10: 50 EDT 2017#Tue May 02 12:10:50 EDT 2017#0

T

32.2 TaskLaunchRequest-transform

Another option to start a task using the t ask-| auncher would be to create a stream using the
Tasklaunchrequest-transform processor to translate a message payload to a TaskLaunchRequest .

The t askl aunchr equest -t r ansf or mcan be added to the available processors by executing the
app register command as follows (for the Rabbit Binder):

app register --type processor --nane tasklaunchrequest-transform--uri maven://
or g. springfranewor k. cl oud. stream app: t askl aunchr equest -t ransf or m processor-rabbi t: 1. 2. 0. RELEASE

For example:

stream create task-stream--definition "http --port=9000 | tasklaunchrequest-transform --uri=maven://
org. springfranmework. cl oud. t ask. app: ti mest anp-task:jar:1.2.0. RELEASE | task-launcher-local --
maven. renot e-repositories.repol.url=http://repo.spring.io/libs-rel ease"

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 92

https://github.com/spring-cloud-stream-app-starters/tasklaunchrequest-transform

Spring Cloud Data Flow Server for Cloud Foundry

33. Composed Tasks
Spring Cloud Data Flow allows a user to create a directed graph where each node of the graph is a task

application. This is done by using the DSL for composed tasks. A composed task can be created via
the RESTful API, the Spring Cloud Data Flow Shell, or the Spring Cloud Data Flow Ul.

33.1 Configuring the Composed Task Runner

Composed tasks are executed via a task application called the Composed Task Runner.

Registering the Composed Task Runner

Out of the box the Composed Task Runner application is not registered with Spring Cloud Data Flow.
So, to launch composed tasks we must first register the Composed Task Runner as an application with
Spring Cloud Data Flow as follows:

app register --name conposed-task-runner --type task --uri maven://
or g. spri ngf ramewor k. cl oud. t ask. app: conposedt askr unner - t ask: <DES|I RED_VERS| O\>

You can also configure Spring Cloud Data Flow to use a different task
definition name for the composed task runner. This can be done by setting the
spring. cl oud. dat af | ow. t ask. conposedTaskRunner Nare property to the name of your choice.
You can then register the composed task runner application with the name you set using that property.

Configuring the Composed Task Runner

The Composed Task Runner application has a dat af | ow. server. uri property that is used for
validation and for launching child tasks. This defaults to | ocal host : 9393. If you run a distributed
Spring Cloud Data Flow server, like you would do if you deploy the server on Cloud Foundry, YARN
or Kubernetes, then you need to provide the URI that can be used to access the server. You can
either provide this dat af | ow. ser ver . uri property for the Composed Task Runner application when
launching a composed task, or you can provide a spri ng. cl oud. dat af | ow. server. uri property
for the Spring Cloud Data Flow server when it is started. For the latter case the dat af | ow. server. uri
Composed Task Runner application property will be automatically set when a composed task is
launched.

33.2 The Lifecycle of a Composed Task

Creating a Composed Task

The DSL for the composed tasks is used when creating a task definition via the task create command.
For example:

dat afl ow. > app register --nanme tinmestanp --type task --uri maven://

or g. spri ngframewor k. cl oud. t ask. app: ti mest anp-t ask: <DESI RED_VERSI O\>

dat af | ow. > app regi ster --name nytaskapp --type task --uri file:///hone/tasks/ nytask.jar
dat af | ow: > task create ny-conposed-task --definition "nytaskapp & ti nestanp”

dat af | ow. > task | aunch ny-conposed-t ask

In the example above we assume that the applications to be used by our composed task have not been
registered yet. So the first two steps we register two task applications. We then create our composed
task definition by using the task create command. The composed task DSL in the example above will,
when launched, execute mytaskapp and then execute the timestamp application.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 93

https://github.com/spring-cloud-task-app-starters/composed-task-runner
http://localhost:9393

Spring Cloud Data Flow Server for Cloud Foundry

But before we launch the my-composed-task definition, we can view what Spring Cloud Data Flow
generated for us. This can be done by executing the task list command.

dat af | ow: >t ask |i st

Task Name # Task Definition #Task Status#
#ny- conposed-t ask #nyt askapp && ti nest anp#unknown #
#nmy- conposed- t ask- myt askapp#nyt askapp #unknown #

#nmy- conposed- t ask-ti mest anp#t i mest anp #unknown #

Spring Cloud Data Flow created three task definitions, one for each of the applications that comprises our
composed task (nmy- conposed-t ask- nyt askapp and ny-conposed-t ask-ti nest anp) as well
as the composed task (nmy- conposed- t ask) definition. We also see that each of the generated names
for the child tasks is comprised of the name of the composed task and the name of the application
separated by a dash - . i.e. my-composed-task - mytaskapp.

Task Application Parameters

The task applications that comprise the composed task definition can also contain parameters. For
example:

dat af | ow: > task create ny-conposed-task --definition "nytaskapp --di spl ayMessage=hell o && tinestanp --
f or mat =YYYY"

Launching a Composed Task

Launching a composed task is done the same way as launching a stand-alone task. i.e.

task launch ny-conposed-task

Once the task is launched and assuming all the tasks complete successfully you will see three task
executions when executing at ask execution |i st.For example:

dat af | ow. >t ask execution |ist

Task Nane # D # Start Time # End Tine #Exi t Code#
#ny- conposed- t ask-ti nest anp#713#Wed Apr 12 16:43: 07 EDT 2017#Wed Apr 12 16:43: 07 EDT 2017#0 #
#ny- conposed- t ask- nyt askapp#712#Wed Apr 12 16:42: 57 EDT 2017#Wed Apr 12 16:42:57 EDT 2017#0 #
#ny- conposed-t ask #711#Wed Apr 12 16:42:55 EDT 2017#Wed Apr 12 16:43:15 EDT 2017#0 #

In the example above we see that my-compose-task launched and it also launched the other tasks in
sequential order and all of them executed successfully with "Exit Code" as 0.

Exit Statuses

The following list shows how the Exit Status will be set for each step (task) contained in the composed
task following each step execution.

 Ifthe TaskExecut i on has an Exi t Message that will be used as the Exi t St at us

» If no Exi t Message is present and the Exi t Code is set to zero then the Exi t St at us for the step
will be COVPLETED.

e If no Exi t Message is present and the Exit Code is set to any non zero number then the
Exi t St at us for the step will be FAI LED.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 94

Spring Cloud Data Flow Server for Cloud Foundry

Destroying a Composed Task

The same command used to destroy a stand-alone task is the same as destroying a composed task.
The only difference is that destroying a composed task will also destroy the child tasks associated with
it. For example

dat af | ow:. >t ask |i st

Task Name # Task Definition #Task Status#
#nmy- conposed- t ask #myt askapp && tinest anp#COVWPLETED #
#nmy- conposed- t ask- myt askapp#nyt askapp #COWPLETED #

#ny- conposed- t ask-t i mest anp#t i nest anp #COWPLETED #

dat af | ow. >t ask destroy ny-conposed-task
dat af | ow: >t ask |i st

#Task Nanme#Task Definition#Task Status#

Stopping a Composed Task
In cases where a composed task execution needs to be stopped. This can be done via the:
e RESTful API

» Spring Cloud Data Flow Dashboard by selecting the Job'’s tab and then clicking the stop button by
the job execution that needs to be stopped.

The composed task run will be stopped when the currently running child task completes. The step
associated with the child task that was running at the time that the composed task was stopped will be
marked as STOPPED as well as the composed task job execution.

Restarting a Composed Task

In cases where a composed task fails during execution and the status of the composed task is FAI LED
then the task can be restarted. This can be done via the:

e RESTful API
« Shell by launching the task using the same parameters

» Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the restart button by
the job execution that needs to be restarted.

@ Note

Restarting a Composed Task job that has been stopped (via the Spring Cloud Data Flow
Dashboard or RESTful API), will relaunch the STOPPED child task, and then launch the
remaining (unlaunched) child tasks in the specified order.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 95

Spring Cloud Data Flow Server for Cloud Foundry

34. Composed Tasks DSL

34.1 Conditional Execution

Conditional execution is expressed using a double ampersand symbol &&. This allows each task in the
sequence to be launched only if the previous task successfully completed. For example:

task create ny-conposed-task --definition "foo & bar"

When the composed task my-composed-task is launched, it will launch the task f oo and if it completes
successfully, then the task bar will be launched. If the f 0o task fails, then the task bar will not launch.

You can also use the Spring Cloud Data Flow Dashboard to create your conditional execution. By using
the designer to drag and drop applications that are required, and connecting them together to create
your directed graph. For example:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 96

Spring Cloud Data Flow Server for Cloud Foundry

START

. () '
foo

L Pt .

, () \
bar

: Y .

Figure 34.1. Conditional Execution

The diagram above is a screen capture of the directed graph as it being created using the Spring
Cloud Data Flow Dashboard. We see that are 4 components in the diagram that comprise a conditional
execution:

Start icon - All directed graphs start from this symbol. There will only be one.
» Task icon - Represents each task in the directed graph.

» End icon - Represents the termination of a directed graph.

Solid line arrow - Represents the flow conditional execution flow between:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 97

Spring Cloud Data Flow Server for Cloud Foundry

* Two applications
¢ The start control node and an application
* An application and the end control node

@ Note

You can view a diagram of your directed graph by clicking the detail button next to the composed
task definition on the definitions tab.

34.2 Transitional Execution

The DSL supports fine grained control over the transitions taken during the execution of the directed
graph. Transitions are specified by providing a condition for equality based on the exit status of the
previous task. A task transition is represented by the following symbol - >.

Basic Transition
A basic transition would look like the following:

task create ny-transition-conposed-task --definition "foo ' FAILED -> bar 'COWLETED -> baz"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. If the exit status of f oo was COVPLETED then baz would launch. All other statuses returned by
f oo will have no effect and task would terminate normally.

Using the Spring Cloud Data Flow Dashboard to create the same "basic transition" would look like:

START

FAILED | COMPLETED

Figure 34.2. Basic Transition

The diagram above is a screen capture of the directed graph as it being created using the Spring Cloud
Data Flow Dashboard. Notice that there are 2 different types of connectors:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 98

Spring Cloud Data Flow Server for Cloud Foundry

» Dashed line - Is the line used to represent transitions from the application to one of the possible
destination applications.

» Solid line - Used to connect applications in a conditional execution or a connection between the
application and a control node (end, start).

When creating a transition, link the application to each of possible destination using the connector. Once
complete go to each connection and select it by clicking it. A bolt icon should appear, click that icon and
enter the exit status required for that connector. The solid line for that connector will turn to a dashed line.

Transition With a Wildcard

Wildcards are supported for transitions by the DSL for example:

task create ny-transition-conposed-task --definition "foo ' FAILED -> bar '*' -> baz"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. Any exit status of f oo other than FAI LED then baz would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with wildcard" would look
like:

START

foo

Figure 34.3. Basic Transition With Wildcard
Transition With a Following Conditional Execution

A transition can be followed by a conditional execution so long as the wildcard is not used. For example:

task create my-transition-conditional -execution-task --definition "foo ' FAILED -> bar ' UNKNOWN -> baz
&& qux && quux"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. If f oo had an exit status of UNKNOWN then baz would launch. Any exit status of f 0o other than
FAI LED or UNKNOWN then qux would launch and upon successful completion quux would launch.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 99

Spring Cloud Data Flow Server for Cloud Foundry

Using the Spring Cloud Data Flow Dashboard to create the same "transition with conditional execution"
would look like:

START

Figure 34.4. Transition With Conditional Execution

@ Note

In this diagram we see the dashed line (transition) connecting the f 0o application to the target
applications, but a solid line connecting the conditional executions between f oo, qux, and
guux.

34.3 Split Execution

Splits allow for multiple tasks within a composed task to be run in parallel. It is denoted by using angle
brackets <> to group tasks and flows that are to be run in parallel. These tasks and flows are separated
by the double pipe | | . For example:

task create nmy-split-task --definition "<foo || bar || baz>"

The example above will launch tasks f oo, bar and baz in parallel.
Using the Spring Cloud Data Flow Dashboard to create the same "split execution" would look like:

START

Figure 34.5. Split

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 100

Spring Cloud Data Flow Server for Cloud Foundry

With the task DSL a user may also execute multiple split groups in succession. For example:

task create ny-split-task --definition "<foo || bar || baz> && <qux || quux>"

In the example above tasks f 0o, bar and baz will be launched in parallel, once they all complete then
tasks qux, quux will be launched in parallel. Once they complete the composed task will end. However
if f 00, bar, or baz fails then, the split containing qux and quux will not launch.

Using the Spring Cloud Data Flow Dashboard to create the same "split with multiple groups" would
look like:

START

Figure 34.6. Split as a part of a conditional execution
Notice that there is a SYNC control node that is by the designer when connecting two consecutive splits.
Split Containing Conditional Execution

A split can also have a conditional execution within the angle brackets. For example:

task create nmy-split-task --definition "<foo & bar || baz>"

In the example above we see that f oo and baz will be launched in parallel, however bar will not launch
until f oo completes successfully.

Using the Spring Cloud Data Flow Dashboard to create the same "split containing conditional execution"
would look like:

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 101

Spring Cloud Data Flow Server for Cloud Foundry

START

C
C

bar baz

Figure 34.7. Split with conditional execution

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 102

Part VIIl. Tasks on Cloud Foundry

Spring Cloud Data Flow’s task functionality exposes new task capabilities within the Pivotal Cloud
Foundry runtime. It is important to note that the current underlying PCF task capabilities are considered
experimental for PCF version versions less than 1.9. See Chapter 16, Feature Toggles for how to disable
task support in Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

35. Version Compatibility

The task functionality depends on the latest versions of PCF for runtime support. This release requires
PCF version 1.7.12 or higher to run tasks. Tasks are an experimental feature in PCF 1.7 and 1.8 and
a GA feature in PCF 1.9.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 104

Spring Cloud Data Flow Server for Cloud Foundry

36. Tooling

It is important to note that there is no Apps Manager support for tasks as of this release. When running
applications as tasks through Spring Cloud Data Flow, the only way is to view them within the context
of CF CLI.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 105

Spring Cloud Data Flow Server for Cloud Foundry

37. Task Database Schema

The database schema for Task applications was changed slighlty from the 1.0.x to 1.1.x version of
Spring Cloud Task. Since Spring Cloud Data Flow automatically creates the database schema if it is
not present upon server startup, you may need to update the schema if you ran a 1.0.x version of the
Data Flow server and now are upgrading to the 1.1.x version. You can find the migration scripts here in
the Spring Cloud Task Github repository. The documentation for Accessing Services with Diego SSH
and this blog entry for connecting a GUI tools to the MySQL Service in PCF should help you to update
the schema.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 106

https://github.com/spring-cloud/spring-cloud-task/tree/1.1.0.RELEASE/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration
https://docs.cloudfoundry.org/devguide/deploy-apps/ssh-services.html
http://pivotaljourney.blogspot.com/2016/05/connecting-gui-tool-to-mysql-service-in.html

Spring Cloud Data Flow Server for Cloud Foundry

38. Running Task Applications

Running a task application within Spring Cloud Data Flow goes through a slightly different lifecycle
than running a stream application. Both types of applications need to be registered with the appropriate
artifact coordinates. Both need a definition created via the SCDF DSL. However, that's where the
similarities end.

With stream based applications, you "deploy" them with the intent that they run until they are undeployed.
A stream definition is only deployed once (it can be scaled, but only deployed as one instance of the
stream as a whole). However, tasks are launched. A single task definition can be launched many times.
With each launch, they will start, execute, and shut down with PCF cleaning up the resources once the
shutdown has occurred. The following sections outline the process of creating, launching, destroying,
and viewing tasks.

38.1 Create a Task

Similar to streams, creating a task application is done via the SCDF DSL or through the dashboard. To
create a task definition in SCDF, you've to either develop a task application or use one of the out-of-
the-box task app-starters. The maven coordinates of the task application should be registered in SCDF.
For more details on how to register task applications, review register task applications section from the
core docs.

Let's see an example that uses the out-of-the-box t i mest anp task application.

dat af | ow. >t ask create --nane foo --definition "ti mestanp"
Created new task 'foo'

@ Note

Tasks in SCDF do not require explicit deployment. They are required to be launched and with
that there are different ways to launch them - refer to this section for more details.

38.2 Launch a Task

Unlike streams, tasks in SCDF requires an explicit launch trigger or it can be manually kicked-off.

dat af | ow: >t ask | aunch foo
Launched task ' foo'

38.3 View Task Logs

As previously mentioned, the CL CLI is the way to interact with tasks on PCF, including viewing the
logs. In order to view the logs as a task is executing use the following command where f 00 is the name
of the task you are executing:

cf v3-logs foo
Tailing logs for app foo...

2016- 08- 19T09: 44: 49. 11- 0700 [APP/ TASK/ bar 1/ 0] QUT 2016-08-19 16:44:49.111 INFO 7 --- [nai n]
o.s.c.t.a.t. Ti mestanpTaskAppl i cation : Started TinestanpTaskApplication in 2.734 seconds (JVM
running for 3.288)

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 107

http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle

Spring Cloud Data Flow Server for Cloud Foundry

2016- 08- 19T09: 44: 49. 13- 0700 [APP/ TASK/ bar 1/ 0] OUT Exit status 0
2016- 08- 19T09: 44: 49. 19- 0700 [APP/ TASK/ bar 1/ 0] OQUT Destroyi ng cont ai ner
2016- 08- 19T09: 44: 50. 41- 0700 [APP/ TASK/ bar 1/ 0] QUT Successful |y destroyed contai ner

@ Note

Logs are only viewable through the CF CLI as the app is running. Historic logs are not available.

38.4 List Tasks

Listing tasks is as simple as:

dat af | ow: >t ask |i st

Task Nane # Task Definition #Task St at us#

#f 0o #ti mest anp #conpl ete #

38.5 List Task Executions

If you'd like to view the execution details of the launched task, you could do the following.

dat af | ow. >t ask execution |ist

Task Nanme #| D# Start Tine # End Ti me # Exit
Code

#f oo: cl oud: #1 # Fri Aug 19 09:44:49 PDT #Fri Aug 19 09:44:49 PDT #0 #

38.6 Destroy a Task

Destroying the task application from SCDF removes the task definition from task repository.

dat af | ow. >t ask destroy foo
Destroyed task 'foo'
dat af | ow: >t ask |i st

#Task Nane#Task Defi nition#Task Status#

38.7 Deleting Task From Cloud Foundry

Currently Spring Cloud Data Flow does not delete tasks deployed on a Cloud Foundry instance once
they have been pushed. The only way to do this now is via CLI on a Cloud Foundry instance version
1.9 or above. This is done in 2 steps:

1. Obtain a list of the apps via the cf apps command.
2. ldentify the task app to be deleted and execute the cf del et e <t ask- name> command.

@ Note

The t ask destroy <task-name> only deletes the definition and not the task deployed on
Cloud Foundry.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 108

Part IX. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

39. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

» Apps Lists all available applications and provides the control to register/unregister them
* Runtime Provides the Data Flow cluster view with the list of all running applications

» Streams List, create, deploy, and destroy Stream Definitions

e Tasks List, create, launch and destroy Task Definitions

» Jobs Perform Batch Job related functions

» Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at htt ps:// | ocal host : 9393/ dashboar d. If you
have enabled security, a login form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

@ Note

The default Dashboard server port is 9393

‘ :’,I spr'ng RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

About

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The
project’s goal is to simplify the development of big data applications.

Dataflow Server Implementation

Name spring-cloud-dataflow-server-local
Version 1.0.0.BUILD-SNAPSHOT (7188a68)
Description Local Data Flow Server

Need Help or Found an Issue?

Project Page http:/fcloud.spring.io/spring-cloud-datafiow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmi/
APl Docs http://docs spring.io/spring-cloud-dataflow/docs/current/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

Figure 39.1. The Spring Cloud Data Flow Dashboard

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 110

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

40. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

‘ ;) spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Apps

This section lists all the available applications and provides the control to register/unregister them (if applicable).

All Applications

+ Register Application(s) 1l Unregister Application(s) A Bulk Import Applications _

Type URI Actions
O file source maven://org.springframework.cloud.stream.app:file-source-rabbit:1.0.2.RELEASE n
o ftp source maven://org.springframework.cloud.stream.app:ftp-source-rabbit:1.0.2.RELEASE n
O gemfire source maven://org.springframework.cloud.stream.app:gemfire-source-rabbit:1.0.2. RELEASE n
O gemfire-cq source maven://org.springframework.cloud.stream.app:gemfire-cq-source-rabbit:1.0.2.RELEASE n
O http source maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.2. RELEASE n
O jdbc source maven://org.springframework.cloud.stream.app:jdbc-source-rabbit:1.0.2. RELEASE n
O jms source maven://org.springframework.cloud.stream.app:jms-source-rabbit:1.0.2. RELEASE n

Figure 40.1. List of Available Applications

40.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>. <name> = <coor di nat es>
For example:

task. ti mestanp=maven://org. springframework. cl oud. t ask. app: ti nest anmp-
task: 1. 2. 0. RELEASE

processor. transformemaven: // or g. spri ngfranework. cl oud. stream app: transform
processor-rabbit:1.2.0. RELEASE

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 111

Spring Cloud Data Flow Server for Cloud Foundry

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

‘ ;;j spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Bulk Import Applications

Import and register applications in bulk. Simply provide a URI that points to the location of the properties file where the keys are formatted as type.name and the values are
the URIs of the apps. For convenience, a list of out-of-the-box Stream and Task app starters is provided below, as well.

OR

Enter the list of properties into the text area field below. Alternatively, you can also
select a file in your local file system, which is used to populate the text area field.

Apps as Properties

i e No file chosen
Select Properties File Choose File

Force G

Figure 40.2. Bulk Import Applications

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 112

Spring Cloud Data Flow Server for Cloud Foundry

41. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

A -
‘ ;J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Cluster view

This section shows the Spring Cloud Data Flow cluster view with the list of all running apps.

Runtime Apps

foo.log deployed 1

foo.time deployed 1

Figure 41.1. List of Running Applications

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 113

Spring Cloud Data Flow Server for Cloud Foundry

42. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Definitions Create Stream

Actions

» minutes :timer.time > transform --expression=payload.substring(2,4) | log deployed W Undeploy b
p seconds :timer.time > transform --expression=payload.substring(4) | log deployed W Undeploy o
¥ timer time --date-format=hhmmss | log deployed © Details W Undeploy D

‘ = time I%]—E%H:) log ‘

Figure 42.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 114

Spring Cloud Data Flow Server for Cloud Foundry

‘ : ‘ spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

timer

194 = ———

‘ B time #]—E%I:) log ’
A transform é‘]—%lb log
k> log

A\ transform

Figure 42.2. Stream Details Page

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 115

Spring Cloud Data Flow Server for Cloud Foundry

43. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization

of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

&) spring

Streams

Create a stream using text based input or the visual editor.

Create Stream

Create Stream Clear

Layout

Zoom: 161 % e e—

RUNTIME STREAMS

W Auto Link | Grid

JOBS ANALYTICS ABOUT

1 STREAM_ l=time

tSTREAM l.time > scriptable-transform --script="
language=javascript log

:STREAM l.time > scriptable-transform --script="retu

v source

= file

[= load-gener. .:]:

Figure 43.1. Flo for Spring Cloud Data Flow

scriptable-transform --script="r

n payload + '::' +

‘ = time

nction double(p) \n{in return p + '

][J}\ scriptable-t... [}

; :

'%]}\Stzriptable-t... 0

'_[[l)\scriptable—t... =

payload” --language=groovy |

" -_language=ruby | leg
' % p;\n}\ndouble(payload);” ==

TH:;» log
}H:} log
I
I
_f':) log

1.2.3.BUILD-SNAPSHOT

Spring Cloud Data Flow
Server for Cloud Foundry

116

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Cloud Foundry

44. Tasks

The Tasks section of the Dashboard currently has three tabs:
* Apps
* Definitions

» Executions

44.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

@ Note

You will also use this tab to create Batch Jobs.

‘ ; II' Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Tasks

This section lists all available task apps. You have the ability to view app details and to create task definitions.

Coordinates

pareclent H n
spark-cluster n n

spark-yarn H n
sgqoop-job H n
sqoop-tool E n
timestamp n n

Figure 44.1. List of Task Apps

On this screen you can perform the following actions:
* View details such as the task app options.

» Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

@ Note

Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 117

Spring Cloud Data Flow Server for Cloud Foundry

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

44 .2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

‘ ;) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Tasks

This section lists all the task definitions and allows you to create, launch and destroy them.

Apps Definitions Executions

Actions

demo-timestamp timestamp complete m X Destroy

Figure 44.2. List of Task Definitions
Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

‘ ;) Spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Bulk Define Tasks

Define tasks in bulk. Type in tasks definitions in the text box or simply browse to a local task definitions file

1 Please enter one or more definitions in the format: mytask=taskapp --optionl=valuel --option2=value2

B Import File v Verify Apps

Figure 44.3. Bulk Define Tasks

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 118

Spring Cloud Data Flow Server for Cloud Foundry

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-nane> = <task-application> <options>
For example:
deno-tinestanp = timestanp --format=hhmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the Ul will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

@ Note

Bulk loading of composed task definitions is not currently supported.

Creating Composed Task Definitions

The dashboard includes the Create Composed Task tab that provides the canvas application, offering
a interactive graphical interface for creating composed tasks.

In this tab, you can:
» Create and visualize composed tasks using DSL, a graphical canvas, or both

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of the composed task

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 119

Spring Cloud Data Flow Server for Cloud Foundry

g Sprlng APPS RUNTIME STREAMS TASKS

Tasks

This section allows for creation of composed tasks.

Apps Definitions Create Composed Task Executions

(® Close DSL View

Create Clear Layout Zoom: 95 % sl @ Grid

1 foo && bar

¥ control nodes

..
9
9

| — |

Figure 44.4. Composed Task Designer

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:
* Parameter Key
» Parameter Value

Task parameters are not typed.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 120

Spring Cloud Data Flow Server for Cloud Foundry

44.3 Executions

&) spring

Tasks

APPS RUNTIME

This section lists all the available task executions.

Apps Definitions

demo-timestamp

2016-10-31 13:49:38,086

TASKS JOBS

2016-10-31 13:49:38,363

ANALYTICS

ABOUT

demo-timestamp

2016-10-31 13:49:32,068

2016-10-31 13:49:32,449

demo-timastamp

2016-10-31 13:49:23,676

2016-10-31 13:49:24,049

demo-timestamp

2016-10-31 13:49:11,228

2016-10-31 13:49:11,296

demo-timastamp

2016-10-31 13:42:08,835

2016-10-31 13:49:09,135

Figure 44.5. List of Task Executions

demo-timestamp

2016-10-31 13:46:56,058

. - §

2016-10-31 13:46:56,169

1.2.3.BUILD-SNAPSHOT

Spring Cloud Data Flow
Server for Cloud Foundry

121

Spring Cloud Data Flow Server for Cloud Foundry

45. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

‘ :) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Batch Jobs

This section lists all the available batch job executions and provides the control to restart the job execution (if restartable).

Executions

Name Task Id Instance Id Execution|d Job Start Time Step Executions Count Status Actlons

job2 1 2 2 2016-06-13 13:57:58,294 1 COMPLETED n n
job1 1 1 1 2016-06-13 13:57:58,241 1 COMPLETED n n

Figure 45.1. List of Job Executions

45.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 122

Spring Cloud Data Flow Server for Cloud Foundry

Job execution details

' :) Sprlng APPS RUNTIME STREAMS TASKS JoBs ANALYTICS ABOUT

Job Execution Details - Execution ID: 2

Property Value

a
]

Job Name job2
Job Instance 2
Task Execution Id 1l
Composed Job x
Job Parameters
Start Time 2016-06-13 13:57:58,294
End Time 2016-06-13 13:57:58,317
Duration 23 ms
Status COMPLETED
Exit Code COMPLETED
Exit Message N/A
Step Execution Count 1
Steps
Step ld Step Name Reads Writes Commits Rollbacks Duration Status Details
2 job2stepl 0 0 1 [+] 8ms COMPLETED “

Figure 45.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

@ Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress
On this screen, you can see a progress bar indicator in regards to the execution of the current step.

Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 123

Spring Cloud Data Flow Server for Cloud Foundry

Q Spring APPS RUNTIME STREAMS TASKS | JOBS | ANALYTICS ABOUT
Step Execution Details - Step Execution ID: 2
Step Execution Progress

Percentage Complete n

Step Execution Id 2

Job Execution Id 2

Step Name job2stepl

Step Type io.spring.configuration.JobConfiguration$2

Status COMPLETED

Commits 1

Duration 8ms

Filter Count o]

Process Skips 0

Reads [¢]

Read Skips 0

Rollbacks 0

Skips [¢]

Writes)

Write Skips 0

Exit Description

N/A

Step Execution Context

Key Value
batch.taskletType ie.spring.configuration.JebConfiguration$2
batch.stepType org.springframework.batch.core.step.tasklet.TaskletStep

Figure 45.3. Step Execution History

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 124

Spring Cloud Data Flow Server for Cloud Foundry

46. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters
» Aggregate Counters

For example, if you create a stream with a Counter application, you can now easily create the
corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 125

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter

Part X. REST API Guide

You can find the documentation about the Data Flow REST API in the core documentation.

http://docs.spring.io/spring-cloud-dataflow/docs/1.2.3.RELEASE/reference/htmlsingle/index.html#api-guide

Part XI. Appendices

Having trouble with Spring Cloud Data Flow, We’d like to help!

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng-cl oud-
dat af | ow.

* Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

* Report bugs with Spring Cloud Data Flow for Cloud Foundry at github.com/spring-cloud/spring-cloud-
dataflow-server-cloudfoundry/issues.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-dataflow
http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry/issues

Spring Cloud Data Flow Server for Cloud Foundry

Appendix A. Data Flow Template

As described in the previous chapter, Spring Cloud Data Flow’s functionality is completely exposed via
REST endpoints. While you can use those endpoints directly, Spring Cloud Data Flow also provides a
Java-based API, which makes using those REST endpoints even easier.

The central entrypoint is the Dat aFl owTenpl at e class in package
org. springfranmework. cl oud. datafl ow. rest.client.

This class implements the interface Dat aFl owOper ati ons and delegates to sub-templates that
provide the specific functionality for each feature-set:

Interface Description

StreamOperations REST client for stream operations
CounterOperations REST client for counter operations
FieldValueCounterOperations REST client for field value counter operations
AggregateCounterOperations REST client for aggregate counter operations
TaskOperations REST client for task operations
JobOperations REST client for job operations
AppRegistryOperations REST client for app registry operations
CompletionOperations REST client for completion operations
RuntimeOperations REST Client for runtime operations

When the Dat aFl owTenpl at e is being initialized, the sub-templates will be discovered via the REST
relations, which are provided by HATEOAS.!

@ Important

If a resource cannot be resolved, the respective sub-template will result in being NULL. A
common cause is that Spring Cloud Data Flow offers for specific sets of features to be enabled/
disabled when launching. For more information see Chapter 16, Feature Toggles.

A.1 Using the Data Flow Template

When using the Data Flow Template the only needed Data Flow dependency is the Spring Cloud Data
Flow Rest Client:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-dataflowrest-client</artifactld>
<ver si on>1. 2. 3. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

With that dependency you will get the Dat aFl owTenpl at e class as well as all needed dependencies
to make calls to a Spring Cloud Data Flow server.

'HATEOAS stands for Hypermedia as the Engine of Application State

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 128

Spring Cloud Data Flow Server for Cloud Foundry

When instantiating the Dat aFlI owTenpl at e, you will also pass in a Rest Tenpl at e. Please be aware
that the needed Rest Tenpl at e requires some additional configuration to be valid in the context of
the Dat aFl owTenpl at e. When declaring a Rest Tenpl at e as a bean, the following configuration will
suffice:

@Bean
public static RestTenpl ate restTenplate() {
Rest Tenpl ate rest Tenpl ate = new Rest Tenpl at e();
rest Tenpl at e. set Error Handl er (new VndEr r or ResponseEr r or Handl er (r est Tenpl at e. get MessageConverters()));
for(H tpMessageConverter<?> converter : restTenpl ate. get MessageConverters()) {
if (converter instanceof Mappi ngJackson2HttpMessageConverter) {
final Mappi ngJackson2Htt pMessageConverter jacksonConverter =
(Mappi ngJackson2Ht t pMessageConverter) converter;
j acksonConvert er. get Obj ect Mapper ()
. regi ster Modul e(new Jackson2Hal Modul e())
.addM xI n(JobExecuti on. cl ass, JobExecutionJacksonM xI n. cl ass)
.addM x| n(JobPar anet ers. cl ass, JobPar anet er sJacksonM xI n. cl ass)
. addM x| n(JobPar anet er . cl ass, JobPar anet er JacksonM xI n. cl ass)
.addM x| n(Jobl nst ance. cl ass, Jobl nst anceJacksonM xI n. cl ass)
.addM xI n(Exi t St atus. cl ass, Exit StatusJacksonM xI n. cl ass)
.addM x| n(St epExecuti on. cl ass, StepExecuti onJacksonM x| n. cl ass)
.addM xI n(Execut i onCont ext . cl ass, Executi onCont ext JacksonM x| n. cl ass)
.addM x| n(St epExecuti onH story. cl ass, StepExecutionHi storyJacksonM xIn. cl ass);
}
}

return restTenpl at e;

}

Now you can instantiate the Dat aFl owTenpl at e with:

Dat aFl owTenpl at e dat aFl owTenpl ate = new Dat aFl owTenpl at e(
new URI ("http://|ocal host:9393/"), restTenpl ate); O

0 The URI points to the ROOT of your Spring Cloud Data Flow Server.

Depending on your requirements, you can nhow make calls to the server. For instance, if you like to get
a list of currently available applications you can execute:

PagedResour ces<AppRegi strati onResour ce> apps = dat aFl owTenpl at e. appRegi stryQperations().list();

Systemout.println(String.format("Retrieved % application(s)",
apps. get Content ().size()));

for (AppRegistrationResource app : apps.getContent()) {
Systemout. println(String.format("App Name: %, App Type: %, App UR: %",
app. get Nare() ,
app. get Type(),
app. get Uri ()));

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 129

Spring Cloud Data Flow Server for Cloud Foundry

Appendix B. Spring XD to SCDF

In this section you will learn all about the migration path from Spring XD to Spring Cloud Data Flow

along with the tips and tricks.

B.1 Terminology Changes

Old

XD-Admin

New

Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A
Modules Applications
Admin Ul Dashboard
Message Bus Binders
Batch / Job Task

B.2 Modules to Applications

If you have custom Spring XD modules, you'd have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

If you'd like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

Alternatively, if you'd like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts fromhtt p,fi |l e, oras hdf s
coordinates

Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you're expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

Spring Cloud Data Flow

1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 130

https://github.com/spring-cloud-stream-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-task/docs/current/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_creating_your_own_applications
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_patching_pre_built_applications

Spring Cloud Data Flow Server for Cloud Foundry

» By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

» Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

» counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the count er -
si nk, thenr edi s becomes required, and you're expected to have your own running r edi s cluster

« field-value-counter-sink:

* The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the fi el d-
val ue- count er - si nk, then r edi s becomes required, and you're expected to have your own
running r edi s cluster

* aggregate-counter-sink:

e The peripheral redi s is not required in Spring Cloud Data Flow. If you intend to use the
aggr egat e- count er - si nk, then r edi s becomes required, and you're expected to have your
own running r edi s cluster

B.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you're to
choose Kafka as the binder, you'd register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you'd add the following dependency
in the classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cl oud-stream bi nder - kaf ka</artifactld>
<ver si on>1. 0. 2. RELEASE</ ver si on>

</ dependency>

» Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

» Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 131

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow Server for Cloud Foundry

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by t opi ¢s or t opi c- exchange and there’s no representation
of queues in the new architecture.

* ${xd. nodul e. i ndex} is not supported anymore; instead, you can directly interact with named
destinations

» stream i ndex changes to: <stream nane>. <l abel / app- nane>
« forinstance: ti ckt ock. O changesto:ticktock.time

» “topic/queue” prefixes are not required to interact with named-channels
« for instance: t opi c: f oo changesto: f oo

« forinstance: stream create streaml --definition ":foo > | og"

Directed Graphs

If you're building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

streamcreate f --definition "queue:foo > transform --expressi on=payl oad+' -foo' | |og" --deploy

streamcreate b --definition "queue:bar > transform --expressi on=payl oad+' -bar' | |o0g" --deploy

streamcreate r --definition "http | router --expression=payload.contains('a')? queue:foo':"'queue:bar"'"
--depl oy

for instance, in Spring Cloud Data Flow:

streamcreate f --definition ":foo > transform --expressi on=payl oad+' -foo' | |0g" --deploy
streamcreate b --definition ":bar > transform --expressi on=payl oad+' -bar' | |0g" --depl oy
streamcreate r --definition "http | router --expression=payload.contains('a)? foo':"bar'" --deploy

B.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

» Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a Spring Cloud
Task applications

» Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 132

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_binders
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

B.5 Shell/DSL Commands

Old Command

New Command

module upload

app register / app import

module list

app list

module info

app info

admin config server

dataflow config server

job create task create
job launch task launch
job list task list

job status task status
job display task display
job destroy task destroy
job execution list task execution list
runtime modules runtime apps
B.6 REST-API

Old API New API

/modules lapps

/runtime/modules /runtime/apps
/runtime/modules/{moduleld} /runtime/apps/{appld}
/jobs/definitions ltask/definitions
/jobs/deployments /task/deployments

B.7 Ul/Flo

The Admin-Ul is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

» (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

« Runtime: Container changes to Runtime. The notion of xd- cont ai ner is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 133

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

» Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

* (New) Tasks:
¢ The sub-tab “Modules” is renamed to “Apps”

e The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

« The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

B.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper
ZooKeeper is not used in the new architecture.
RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqglServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the count er -
si nk, fi el d-val ue-count er - si nk, or aggr egat e- count er - si nk applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd- adnmi n and xd- cont ai ner server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

B.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

B.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 134

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
streams.xml#spring-cloud-dataflow-global-properties
streams.xml#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Cloud Foundry

apache yarn, kubernetes, or apache mesos). For example, if you're running Spring Cloud Data Flow
on Cloud Foundry, you'd download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

B.11 Hadoop Distribution Compatibility

The hdf s- si nk application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

» Cloudera - cdh5

Pivotal Hadoop - phd30
» Hortonworks Hadoop - hdp24

» Hortonworks Hadoop - hdp23

Vanilla Hadoop - hadoop26

Vanilla Hadoop - 2.7.x (default)

B.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
* Deploy the server directly in a YARN cluster

» Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

B.13 Use Case Comparison

Let's review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ti ckt ock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd- si ngl enode server from CLI Start a binder of your choice

xd- si ngl enode Start | ocal - server implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1.0. 0. BU LD
SNAPSHOT. j ar

Start xd- shel | server from the CLI Start dat af | ow shel | server from the CLI

xd-shel |

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 135

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-ambari

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD

Create t i ckt ock stream

xd: >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results in the xd-
si ngl enode server console

Spring Cloud Data Flow

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Create t i ckt ock stream

dat af | ow. >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results by tailing the
ticktock. | og/ stdout | og application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD

Spring Cloud Data Flow

Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Register custom “processor” module to transform
payload to a desired format

xd: >nodul e upl oad --nane
toupper --type processor --file
<CUSTOM JAR FI LE_LOCATI ON>

Create a stream with custom module

xd: >stream create testupper --
definition “http | toupper | |og
depl oy

Review results in the xd- si ngl enode server
console

Start a binder of your choice

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1ocal -1.0.0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Register custom “processor” application to
transform payload to a desired format

dat af | ow. >app regi ster --nane
t oupper --type processor --uri
<MAVEN_URI _ COCORDI NATES>

Create a stream with custom application

dat af | ow. >stream create testupper --
definition “http | toupper | log" --
depl oy

Review results by tailing the t est upper. | og/
st dout _I| og application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow

1.2.3.BUILD-SNAPSHOT

Server for Cloud Foundry

136

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD
Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Spring Cloud Data Flow

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1. 0. 0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. | ar

Register custom “batch-job” module

xd: >nodul e upl oad --nane
simpl e-batch --type job --file
<CUSTOM JAR_FI LE_LOCATI ON>

Register custom “batch-job” as task application

dat af | ow. >app regi ster --nane
simpl e-batch --type task --uri
<MAVEN_URI _COORDI NATES>

Create a job with custom batch-job module

xd: >j ob create batchtest --
definition “sinple-batch”

Deploy job
xd: >j ob depl oy bat cht est
Launch job
xd: >j ob | aunch bat cht est

Review results in the xd- si ngl enode server
console as well as Jobs tab in Ul (executions
sub-tab should include all step details)

Create a task with custom batch-job application

dat af | ow. >t ask create batchtest --
definition “sinple-batch”

NA

Launch task

dat af | ow. >t ask | aunch bat cht est

Review results by tailing the bat cht est /

st dout _| og application logs as well as Task
tab in Ul (executions sub-tab should include all
step details)

Spring Cloud Data Flow

1.2.3.BUILD-SNAPSHOT

Server for Cloud Foundry

137

Spring Cloud Data Flow Server for Cloud Foundry

Appendix C. Building

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m
We try to cover this in the . mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ynl , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

C.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./ m/nw cl ean package - DskipTests -P full -pl spring-cloud-datafl ow server-
cl oudf oundry-docs -am

C.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 138

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://spring.io/tools
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/

Spring Cloud Data Flow Server for Cloud Foundry

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . setti ngs. xm into your own ~/ . n/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./nvnw ecli pse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting proj ects from the
fil e menu.

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 139

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Cloud Foundry

Appendix D. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

D.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

D.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

Spring Cloud Data Flow
1.2.3.BUILD-SNAPSHOT Server for Cloud Foundry 140

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Cloud Foundry
	Table of Contents
	Part I. Getting started
	1. Deploying on Cloud Foundry
	1.1 Provision a Redis service instance on Cloud Foundry
	1.2 Provision a Rabbit service instance on Cloud Foundry
	1.3 Provision a MySQL service instance on Cloud Foundry
	1.4 Download the Spring Cloud Data Flow Server and Shell apps
	1.5 Running the Server
	Deploying and Running the Server app on Cloud Foundry
	Configuring Defaults for Deployed Apps

	Running the Server app locally
	Sample Manifest Template

	1.6 Running Spring Cloud Data Flow Shell locally

	2. Application Names and Prefixes
	2.1 Using Custom Routes

	3. Deploying Docker Applications
	4. Application Level Service Bindings
	5. A Note About User Provided Services
	6. Application Rolling Upgrades
	7. Maximum Disk Quota Configuration
	7.1 PCF’s Operations Manager Configuration
	7.2 Scale Application
	7.3 Configuring target free disk percentage

	Part II. Applications
	Part III. Architecture
	8. Introduction
	9. Microservice Architectural Style
	9.1 Comparison to other Platform architectures

	10. Streaming Applications
	10.1 Imperative Programming Model
	10.2 Functional Programming Model

	11. Streams
	11.1 Topologies
	11.2 Concurrency
	11.3 Partitioning
	11.4 Message Delivery Guarantees

	12. Analytics
	13. Task Applications
	14. Data Flow Server
	14.1 Endpoints
	14.2 Customization
	14.3 Security

	15. Runtime
	15.1 Fault Tolerance
	15.2 Resource Management
	15.3 Scaling at runtime
	15.4 Application Versioning

	Part IV. Server Configuration
	16. Feature Toggles
	17. Database Configuration
	17.1 Adding a custom JDBC driver

	18. Security
	18.1 Enabling HTTPS
	Using Self-Signed Certificates
	Self-Signed Certificates and the Shell

	18.2 Traditional Authentication
	Single User Authentication
	File based authentication
	LDAP Authentication
	LDAP Transport Security

	Shell Authentication
	Customizing authorization
	Authorization - Shell and Dashboard Behavior
	Authorization with Ldap

	18.3 OAuth 2.0
	OAuth REST Endpoint Authorization
	OAuth Authentication using the Spring Cloud Data Flow Shell
	OAuth2 Authentication Examples
	Local OAuth2 Server
	Authentication using GitHub

	18.4 Securing the Spring Boot Management Endpoints

	19. Monitoring and Management
	19.1 Spring Boot Admin
	19.2 Monitoring Deployed Applications
	19.3 Log and DataDog MetricWriter

	Part V. Shell
	20. Shell Options
	21. Listing available commands
	22. Tab Completion
	23. White space and quote rules
	23.1 Quotes and Escaping
	Shell rules
	DSL parsing rules
	SpEL syntax and SpEL literals
	Putting it all together

	Part VI. Streams
	24. Introduction
	24.1 Stream Pipeline DSL
	24.2 Application properties

	25. Lifecycle of Streams
	25.1 Register a Stream App
	Whitelisting application properties
	Creating and using a dedicated metadata artifact
	Using the companion artifact

	25.2 Creating custom applications
	25.3 Creating a Stream
	Application properties
	Passing application properties when creating a stream

	Deployment properties
	Application properties versus Deployer properties
	Passing instance count as deployment property
	Inline vs file reference properties
	Passing application properties when deploying a stream
	Passing Spring Cloud Stream properties for the application
	Passing per-binding producer consumer properties
	Passing stream partition properties during stream deployment
	Passing application content type properties
	Overriding application properties during stream deployment

	Common application properties

	25.4 Destroying a Stream
	25.5 Deploying and Undeploying Streams

	26. Stream DSL
	26.1 Tap a Stream
	26.2 Using Labels in a Stream
	26.3 Named Destinations
	26.4 Fan-in and Fan-out

	27. Stream applications with multiple binder configurations
	28. Examples
	28.1 Simple Stream Processing
	28.2 Stateful Stream Processing
	28.3 Other Source and Sink Application Types

	Part VII. Tasks
	29. Introduction
	30. The Lifecycle of a Task
	30.1 Creating a Task Application
	Task Database Configuration

	30.2 Registering a Task Application
	30.3 Creating a Task Definition
	30.4 Launching a Task
	Common application properties

	30.5 Reviewing Task Executions
	30.6 Destroying a Task Definition

	31. Subscribing to Task/Batch Events
	32. Launching Tasks from a Stream
	32.1 TriggerTask
	32.2 TaskLaunchRequest-transform

	33. Composed Tasks
	33.1 Configuring the Composed Task Runner
	Registering the Composed Task Runner
	Configuring the Composed Task Runner

	33.2 The Lifecycle of a Composed Task
	Creating a Composed Task
	Task Application Parameters

	Launching a Composed Task
	Exit Statuses

	Destroying a Composed Task
	Stopping a Composed Task
	Restarting a Composed Task

	34. Composed Tasks DSL
	34.1 Conditional Execution
	34.2 Transitional Execution
	Basic Transition
	Transition With a Wildcard
	Transition With a Following Conditional Execution

	34.3 Split Execution
	Split Containing Conditional Execution

	Part VIII. Tasks on Cloud Foundry
	35. Version Compatibility
	36. Tooling
	37. Task Database Schema
	38. Running Task Applications
	38.1 Create a Task
	38.2 Launch a Task
	38.3 View Task Logs
	38.4 List Tasks
	38.5 List Task Executions
	38.6 Destroy a Task
	38.7 Deleting Task From Cloud Foundry

	Part IX. Dashboard
	39. Introduction
	40. Apps
	40.1 Bulk Import of Applications

	41. Runtime
	42. Streams
	43. Create Stream
	44. Tasks
	44.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	44.2 Definitions
	Creating Task Definitions using the bulk define interface
	Creating Composed Task Definitions
	Launching Tasks

	44.3 Executions

	45. Jobs
	45.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	46. Analytics

	Part X. REST API Guide
	Part XI. Appendices
	Appendix A. Data Flow Template
	A.1 Using the Data Flow Template

	Appendix B. Spring XD to SCDF
	B.1 Terminology Changes
	B.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	B.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	B.4 Batch to Tasks
	B.5 Shell/DSL Commands
	B.6 REST-API
	B.7 UI / Flo
	B.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	B.9 Central Configuration
	B.10 Distribution
	B.11 Hadoop Distribution Compatibility
	B.12 YARN Deployment
	B.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix C. Building
	C.1 Documentation
	C.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix D. Contributing
	D.1 Sign the Contributor License Agreement
	D.2 Code Conventions and Housekeeping

