
Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, Ilayaperumal
Gopinathan, Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas

Risberg, Dave Syer, David Turanski, Janne Valkealahti, Oleg Zhurakousky

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow iii

Table of Contents

I. Getting started ... 1
1. System Requirements ... 2
2. Deploying Spring Cloud Data Flow Local Server .. 3

2.1. Maven Configuration .. 4
3. Application Configuration ... 5

II. Applications .. 6
III. Architecture ... 7

4. Introduction ... 8
5. Microservice Architectural Style ... 10

5.1. Comparison to other Platform architectures ... 10
6. Streaming Applications .. 12

6.1. Imperative Programming Model ... 12
6.2. Functional Programming Model ... 12

7. Streams .. 13
7.1. Topologies ... 13
7.2. Concurrency ... 13
7.3. Partitioning ... 13
7.4. Message Delivery Guarantees .. 14

8. Analytics ... 16
9. Task Applications .. 17
10. Data Flow Server .. 18

10.1. Endpoints ... 18
10.2. Customization ... 18
10.3. Security .. 19

11. Runtime .. 20
11.1. Fault Tolerance .. 20
11.2. Resource Management ... 20
11.3. Scaling at runtime .. 20
11.4. Application Versioning .. 20

IV. Server Configuration .. 21
12. Feature Toggles .. 22
13. Database Configuration ... 23

13.1. Adding a custom JDBC driver ... 24
14. Security .. 25

14.1. Enabling HTTPS ... 25
Using Self-Signed Certificates .. 26
Self-Signed Certificates and the Shell .. 26

14.2. Traditional Authentication .. 27
Single User Authentication .. 27
File based authentication ... 29
LDAP Authentication ... 29

LDAP Transport Security ... 30
Shell Authentication ... 31
Customizing authorization .. 31
Authorization - Shell and Dashboard Behavior .. 34
Authorization with Ldap ... 34

14.3. OAuth 2.0 .. 34

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow iv

OAuth REST Endpoint Authorization .. 35
OAuth Authentication using the Spring Cloud Data Flow Shell 35
OAuth2 Authentication Examples ... 36

Local OAuth2 Server ... 36
Authentication using GitHub .. 36

14.4. Securing the Spring Boot Management Endpoints .. 37
15. Monitoring and Management ... 39

15.1. Spring Boot Admin ... 39
15.2. Monitoring Deployed Applications .. 40
15.3. Log and DataDog MetricWriter .. 43

V. Shell .. 44
16. Shell Options .. 45
17. Listing available commands ... 46
18. Tab Completion ... 47
19. White space and quote rules ... 48

19.1. Quotes and Escaping ... 48
Shell rules .. 48
DSL parsing rules ... 49
SpEL syntax and SpEL literals .. 49
Putting it all together ... 50

VI. Streams ... 51
20. Introduction ... 52

20.1. Stream Pipeline DSL .. 52
20.2. Application properties ... 52

21. Lifecycle of Streams .. 54
21.1. Register a Stream App ... 54

Whitelisting application properties .. 56
Creating and using a dedicated metadata artifact ... 56
Using the companion artifact ... 57

21.2. Creating custom applications .. 58
21.3. Creating a Stream .. 58

Application properties .. 59
Passing application properties when creating a stream 59

Deployment properties .. 60
Application properties versus Deployer properties 60
Passing instance count as deployment property .. 61
Inline vs file reference properties ... 61
Passing application properties when deploying a stream 62
Passing Spring Cloud Stream properties for the application 62
Passing per-binding producer consumer properties 63
Passing stream partition properties during stream deployment 63
Passing application content type properties .. 64
Overriding application properties during stream deployment 65

Common application properties .. 65
21.4. Destroying a Stream ... 65
21.5. Deploying and Undeploying Streams ... 65

22. Stream DSL .. 67
22.1. Tap a Stream ... 67
22.2. Using Labels in a Stream ... 67
22.3. Named Destinations ... 67

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow v

22.4. Fan-in and Fan-out ... 68
23. Stream applications with multiple binder configurations ... 69
24. Examples .. 70

24.1. Simple Stream Processing .. 70
24.2. Stateful Stream Processing ... 70
24.3. Other Source and Sink Application Types .. 71

VII. Tasks ... 72
25. Introduction ... 73
26. The Lifecycle of a Task ... 74

26.1. Creating a Task Application .. 74
Task Database Configuration ... 74

26.2. Registering a Task Application .. 75
26.3. Creating a Task Definition ... 76
26.4. Launching a Task ... 76

Common application properties .. 76
26.5. Reviewing Task Executions .. 77
26.6. Destroying a Task Definition ... 77

27. Subscribing to Task/Batch Events .. 79
28. Launching Tasks from a Stream .. 80

28.1. TriggerTask .. 80
28.2. TaskLaunchRequest-transform .. 81

29. Composed Tasks .. 82
29.1. Configuring the Composed Task Runner ... 82

Registering the Composed Task Runner .. 82
Configuring the Composed Task Runner .. 82

29.2. The Lifecycle of a Composed Task ... 82
Creating a Composed Task ... 82

Task Application Parameters ... 83
Launching a Composed Task .. 83

Exit Statuses ... 83
Destroying a Composed Task .. 84
Stopping a Composed Task .. 84
Restarting a Composed Task .. 84

30. Composed Tasks DSL .. 85
30.1. Conditional Execution ... 85
30.2. Transitional Execution ... 87

Basic Transition .. 87
Transition With a Wildcard ... 88
Transition With a Following Conditional Execution .. 88

30.3. Split Execution ... 89
Split Containing Conditional Execution ... 90

VIII. Dashboard ... 92
31. Introduction ... 93
32. Apps ... 94

32.1. Bulk Import of Applications ... 94
33. Runtime .. 96
34. Streams .. 97
35. Create Stream .. 99
36. Tasks .. 100

36.1. Apps .. 100

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow vi

Create a Task Definition from a selected Task App ... 100
View Task App Details .. 101

36.2. Definitions .. 101
Creating Task Definitions using the bulk define interface 101
Creating Composed Task Definitions .. 102
Launching Tasks ... 103

36.3. Executions ... 104
37. Jobs ... 105

37.1. List job executions .. 105
Job execution details ... 106
Step execution details ... 106
Step Execution Progress ... 106

38. Analytics ... 108
IX. REST API Guide ... 109

39. Overview ... 110
39.1. HTTP verbs .. 110
39.2. HTTP status codes ... 110
39.3. Headers ... 111
39.4. Errors ... 111
39.5. Hypermedia .. 111

40. Resources ... 112
40.1. Index .. 112

Accessing the index .. 112
Request structure .. 112
Example request ... 112
Response structure ... 112
Example response ... 112
Links ... 114

40.2. Server Meta Information .. 115
Retrieving information about the server .. 115

Request structure .. 116
Example request ... 116
Response structure ... 116

40.3. Registered Applications ... 117
Listing Applications .. 117

Request structure .. 117
Request parameters .. 117
Example request ... 117
Response structure ... 117

Getting Information on a partical Application ... 118
Request structure .. 118
Path parameters .. 118
Example request ... 118
Response structure ... 118

Registering a New Application ... 119
Request structure .. 119
Request parameters .. 119
Path parameters .. 119
Example request ... 119
Response structure ... 120

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow vii

Unregistering an Application .. 120
Request structure .. 120
Path parameters .. 120
Example request ... 120
Response structure ... 120

Registering Applications in Bulk ... 120
Request structure .. 120
Request parameters .. 120
Example request ... 121
Response structure ... 121

40.4. Stream Definitions .. 121
Creating a new Stream Definition ... 121

Request structure .. 121
Request parameters .. 121
Example request ... 122
Response structure ... 122

List all Stream Definitions .. 122
Request structure .. 122
Request parameters .. 122
Example request ... 122
Response structure ... 122

List related Stream Definitions ... 123
Request structure .. 123
Request parameters .. 123
Example request ... 123
Response structure ... 123

Delete a single Stream Definition ... 124
Request structure .. 124
Request parameters .. 124
Example request ... 124
Response structure ... 124

Delete all Stream Definitions .. 124
Request structure .. 124
Request parameters .. 124
Example request ... 124
Response structure ... 124

40.5. Stream Deployments .. 124
Example "stream deploy" request for a ticktock stream 124

40.6. Task Definitions .. 124
Creating a new Task Definition .. 124

Request structure .. 125
Request parameters .. 125
Example request ... 125
Response structure ... 125

List all Task Definitions ... 125
Request structure .. 125
Request parameters .. 125
Example request ... 125
Response structure ... 125

Retrieve Task Definition Detail ... 126

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow viii

Request structure .. 126
Request parameters .. 126
Example request ... 126
Response structure ... 126

Delete Task Definition ... 127
Request structure .. 127
Request parameters .. 127
Example request ... 127
Response structure ... 127

40.7. Task Executions ... 127
Launching a Task ... 127

Request structure .. 127
Request parameters .. 127
Example request ... 127
Response structure ... 128

List All Task Executions .. 128
Request structure .. 128
Request parameters .. 128
Example request ... 128
Response structure ... 128

List All Task Executions With a Specified Task Name 129
Request structure .. 129
Request parameters .. 129
Example request ... 129
Response structure ... 129

Task Execution Detail .. 130
Request structure .. 130
Request parameters .. 130
Example request ... 130
Response structure ... 130

Delete Task Execution ... 130
Request structure .. 130
Request parameters .. 131
Example request ... 131
Response structure ... 131

40.8. Runtime Information about Applications ... 131
Listing All Applications at Runtime ... 131

Request structure .. 131
Example request ... 131
Response structure ... 131

Querying all Instances of a Single App ... 132
Request structure .. 132
Example request ... 133
Response structure ... 133

Querying a Single Instance of a Single App .. 134
Request structure .. 134
Example request ... 134
Response structure ... 134

40.9. Metrics for Stream Applications ... 135
Request structure .. 136

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow ix

Example request ... 136
Response structure ... 136
Example response ... 136

X. Appendices ... 150
A. Data Flow Template .. 151

A.1. Using the Data Flow Template .. 151
B. ‘How-to’ guides ... 153

B.1. Configure Maven Properties ... 153
B.2. Logging ... 154
B.3. Deployment Logs ... 154
B.4. Application Logs ... 155

Log redirect ... 155
B.5. Frequently asked questions .. 156

Advanced SpEL expressions ... 156
How to use JDBC-sink? .. 156
How to use multiple message-binders? .. 157

C. Spring XD to SCDF .. 159
C.1. Terminology Changes .. 159
C.2. Modules to Applications ... 159

Custom Applications .. 159
Application Registration ... 159
Application Properties .. 160

C.3. Message Bus to Binders .. 160
Message Bus .. 160
Binders ... 160
Named Channels .. 161
Directed Graphs .. 161

C.4. Batch to Tasks .. 161
C.5. Shell/DSL Commands .. 162
C.6. REST-API .. 162
C.7. UI / Flo .. 162
C.8. Architecture Components ... 163

ZooKeeper .. 163
RDBMS .. 163
Redis .. 163
Cluster Topology ... 163

C.9. Central Configuration ... 163
C.10. Distribution ... 163
C.11. Hadoop Distribution Compatibility .. 164
C.12. YARN Deployment ... 164
C.13. Use Case Comparison ... 164

Use Case #1 .. 164
Use Case #2 .. 165
Use Case #3 .. 165

D. Building .. 167
D.1. Documentation ... 167
D.2. Working with the code ... 167

Importing into eclipse with m2eclipse ... 167
Importing into eclipse without m2eclipse ... 168

E. Contributing .. 169

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow x

E.1. Sign the Contributor License Agreement ... 169
E.2. Code Conventions and Housekeeping ... 169

Part I. Getting started
If you’re just getting started with Spring Cloud Data Flow, this is the section for you! Here we answer
the basic “what?”, “how?” and “why?” questions. You’ll find a gentle introduction to Spring Cloud Data
Flow along with installation instructions. We’ll then build our first Spring Cloud Data Flow application,
discussing some core principles as we go.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 2

1. System Requirements

You need Java installed (Java 8 or later), and to build, you need to have Maven installed as well.

You need to have an RDBMS for storing stream, task and app states in the database. The local Data
Flow server by default uses embedded H2 database for this.

You also need to have Redis running if you are running any streams that involve analytics applications.
Redis may also be required run the unit/integration tests.

For the deployed streams and tasks to communicate, either RabbitMQ or Kafka needs to be installed.

https://redis.io
http://www.rabbitmq.com
http://kafka.apache.org

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 3

2. Deploying Spring Cloud Data Flow Local Server

1. Download the Spring Cloud Data Flow Server and Shell apps:

wget http://repo.spring.io/snapshot/org/springframework/cloud/spring-cloud-dataflow-server-

local/1.2.4.BUILD-SNAPSHOT/spring-cloud-dataflow-server-local-1.2.4.BUILD-SNAPSHOT.jar

wget http://repo.spring.io/snapshot/org/springframework/cloud/spring-cloud-dataflow-

shell/1.2.4.BUILD-SNAPSHOT/spring-cloud-dataflow-shell-1.2.4.BUILD-SNAPSHOT.jar

2. Launch the Data Flow Server

a. Since the Data Flow Server is a Spring Boot application, you can run it just by using java -jar.

$ java -jar spring-cloud-dataflow-server-local-1.2.4.BUILD-SNAPSHOT.jar

3. Launch the shell:

$ java -jar spring-cloud-dataflow-shell-1.2.4.BUILD-SNAPSHOT.jar

If the Data Flow Server and shell are not running on the same host, point the shell to the Data Flow
server URL:

server-unknown:>dataflow config server http://198.51.100.0

Successfully targeted http://198.51.100.0

dataflow:>

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the Kafka binder in bulk, you can with the following command. For more details,
review how to register applications.

$ dataflow:>app import --uri http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven

Note

Depending on your environment, you may need to configure the Data Flow Server to point
to a custom Maven repository location or configure proxy settings. See Section 2.1, “Maven
Configuration” for more information.

4. You can now use the shell commands to list available applications (source/processors/sink) and
create streams. For example:

dataflow:> stream create --name httptest --definition "http --server.port=9000 | log" --deploy

Note

You will need to wait a little while until the apps are actually deployed successfully before
posting data. Look in the log file of the Data Flow server for the location of the log files for
the http and log applications. Tail the log file for each application to verify the application
has started.

Now post some data

dataflow:> http post --target http://localhost:9000 --data "hello world"

Look to see if hello world ended up in log files for the log application.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 4

Note

When deploying locally, each app (and each app instance, in case of count>1) gets a
dynamically assigned server.port unless you explicitly assign one with --server.port=x.
In both cases, this setting is propagated as a configuration property that will override any lower-
level setting that you may have used (e.g. in application.yml files).

Tip

In case you encounter unexpected errors when executing shell commands, you can retrieve
more detailed error information by setting the exception logging level to WARNING in
logback.xml:

<logger name="org.springframework.shell.core.JLineShellComponent.exceptions" level="WARNING"/>

2.1 Maven Configuration

If you want to override specific maven configuration properties (remote repositories, proxies, etc.) and/
or run the Data Flow Server behind a proxy, you need to specify those properties as command line
arguments when starting the Data Flow Server. For example:

$ java -jar spring-cloud-dataflow-server-local-1.2.4.BUILD-SNAPSHOT.jar --maven.localRepository=mylocal

--maven.remote-repositories.repo1.url=https://repo1

--maven.remote-repositories.repo1.auth.username=user1

--maven.remote-repositories.repo1.auth.password=pass1

--maven.remote-repositories.repo2.url=https://repo2 --maven.proxy.host=proxy1

--maven.proxy.port=9010 --maven.proxy.auth.username=proxyuser1

--maven.proxy.auth.password=proxypass1

By default, the protocol is set to http. You can omit the auth properties if the proxy doesn’t need
a username and password. Also, the maven localRepository is set to ${user.home}/.m2/
repository/ by default. Like in the above example, the remote repositories can be specified along with
their authentication (if needed). If the remote repositories are behind a proxy, then the proxy properties
can be specified as above.

As these are Spring Boot @ConfigurationProperties you can also specify them as environment
variables, e.g. MAVEN_REMOTE_REPOSITORIES_REPO1_URL. Another common option, is to set
the properties using the SPRING_APPLICATION_JSON environment variable. An example of how the
JSON is structured is shown below:

$ SPRING_APPLICATION_JSON='{ "maven": { "local-repository": null,

"remote-repositories": { "repo1": { "url": "https://repo1", "auth": { "username": "repo1user",

 "password": "repo1pass" } }, "repo2": { "url": "https://repo2" } },

"proxy": { "host": "proxyhost", "port": 9018, "auth": { "username": "proxyuser", "password":

 "proxypass" } } } }' java -jar spring-cloud-dataflow-server-local-{project-version}.jar

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 5

3. Application Configuration

You can use the following configuration properties of the Data Flow server to customize how applications
are deployed.

spring.cloud.deployer.local.workingDirectoriesRoot=java.io.tmpdir # Directory in which all created

 processes will run and create log files.

spring.cloud.deployer.local.deleteFilesOnExit=true # Whether to delete created files and directories on

 JVM exit.

spring.cloud.deployer.local.envVarsToInherit=TMP,LANG,LANGUAGE,"LC_.*. # Array of regular expression

 patterns for environment variables that will be passed to launched applications.

spring.cloud.deployer.local.javaCmd=java # Command to run java.

spring.cloud.deployer.local.shutdownTimeout=30 # Max number of seconds to wait for app shutdown.

spring.cloud.deployer.local.javaOpts= # The Java options to pass to the JVM

When deploying the application you can also set deployer properties prefixed with deployer.<name
of application>, So for example to set Java options for the time application in the ticktock
stream, use the following stream deployment properties.

dataflow:> stream create --name ticktock --definition "time --server.port=9000 | log"

dataflow:> stream deploy --name ticktock --properties "deployer.time.local.javaOpts=-Xmx2048m -

Dtest=foo"

As a convenience you can set the property deployer.memory to set the Java option -Xmx. So for
example,

dataflow:> stream deploy --name ticktock --properties "deployer.time.memory=2048m"

At deployment time, if you specify an -Xmx option in the deployer.<app>.local.javaOpts
property in addition to a value of the deployer.<app>.local.memory option, the value in the
javaOpts property has precedence. Also, the javaOpts property set when deploying the application
has precedence over the Data Flow server’s spring.cloud.deployer.local.javaOpts property.

Part II. Applications
A selection of pre-built stream and task/batch starter apps for various data integration and processing
scenarios facilitate learning and experimentation. For more details, review how to register applications

http://cloud.spring.io/spring-cloud-stream-app-starters/
http://cloud.spring.io/spring-cloud-task-app-starters/

Part III. Architecture

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 8

4. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

• Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

• Short lived Task applications that process a finite set of data and then terminate.

Depending on the runtime, applications can be packaged in two ways

• Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

• Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

• Cloud Foundry

• Apache YARN

• Kubernetes

• Apache Mesos

• Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for:

• Interpreting and executing a stream DSL that describes the logical flow of data through multiple long
lived applications.

• Launching a long lived task application

• Interpreting and executing a composed task DSL that describes the logical flow of data through
multiple short lived applications.

• Applyhing a deployment manifest that describes the mapping of applications onto the runtime. For
example, to set the initial number of instances, memory requirements, and data partitioning.

• Providing the runtime status of deployed applications

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 9

As an example, the stream DSL to describe the flow of data from an http source to an Apache Cassandra
sink would be written as “http | cassandra”. These names in the DSL are registered with the Data
Flow Server and map onto application artifacts that can be hosted in Maven or Docker repositories.
Many source, processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router)
are provided by the Spring Cloud Data Flow team. The pipe symbol represents the communication
between the two applications via messaging middleware. The two messaging middleware brokers that
are supported are

• Apache Kafka

• RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

Figure 4.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 10

5. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the UI to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

5.1 Comparison to other Platform architectures

Spring Cloud Data Flow’s architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 11

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 12

6. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

6.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@EnableBinding(Sink.class)

public class LoggingSink {

 @StreamListener(Sink.INPUT)

 public void log(String message) {

 System.out.println(message);

 }

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @EnableBinding annotation is what is used to tie together the input channel to the external
middleware.

6.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’s KStream API in
the programming model.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 13

7. Streams

7.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandra, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

7.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

7.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

Figure 7.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a partitionKeyExpression producer property when deploying
the stream. The partitionKeyExpression identifies what part of the message will be used as the
key to partition data in the underlying middleware. An ingest stream can be defined as http |
averageprocessor | cassandra (Note that the Cassandra sink isn’t shown in the diagram above).

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 14

Suppose the payload being sent to the http source was in JSON format and had a field called sensorId.
Deploying the stream with the shell command stream deploy ingest --propertiesFile

ingestStream.properties where the contents of the file ingestStream.properties are

deployer.http.count=3

deployer.averageprocessor.count=2

app.http.producer.partitionKeyExpression=payload.sensorId

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payload.sensorId %
partitionCount where the partitionCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
Spring Cloud Stream Partitioning properties.

Also note, that you can’t currently scale partitioned streams. Read the section Section 11.3, “Scaling
at runtime” for more information.

7.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing persistent
publish-subscribe semantics.

The Binder abstraction in Spring Cloud Stream is what connects the application to the middleware. There
are several configuration properties of the binder that are portable across all binder implementations
and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the common consumer properties maxAttempts,
backOffInitialInterval, backOffMaxInterval, and backOffMultiplier. The default
values of these properties will retry the callback method invocation 3 times and wait one second for the
first retry. A backoff multiplier of 2 is used for the second and third attempts.

When the number of retry attempts has exceeded the maxAttempts value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The dead letter
queue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it
is a dedicated topic). To enable this for RabbitMQ set the consumer properties republishtoDlq and
autoBindDlq and the producer property autoBindDlq to true when deploying the stream. To always
apply these producer and consumer properties when deploying streams, configure them as common
application properties when starting the Data Flow server.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_binders
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 15

Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find extensive declarative support for all the native QOS options.

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 16

8. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

• Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

• Field Value Counter - Counts occurrences of unique values for a named field in a message payload

• Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud-stream-app-starters/field-value-counter/tree/master/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud-stream-app-starters/aggregate-counter/tree/master/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 17

9. Task Applications

The Spring Cloud Task programming model provides:

• Persistence of the Task’s lifecycle events and exit code status.

• Lifecycle hooks to execute code before or after a task execution.

• Emit task events to a stream (as a source) during the task lifecycle.

• Integration with Spring Batch Jobs.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 18

10. Data Flow Server

10.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Figure 10.1. The Spring Cloud Data Flow Server

10.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let’s you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

https://github.com/spring-projects/spring-hateoas

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 19

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

10.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 20

11. Runtime

11.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

11.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

11.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, UIs, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

11.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Part IV. Server Configuration
In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security. You will also learn how to configure Spring Cloud Data Flow
shell’s features.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 22

12. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UI) for:

1. Streams

2. Tasks

3. Analytics

One can enable, disable these features by setting the following boolean properties when launching the
Data Flow server:

• spring.cloud.dataflow.features.streams-enabled

• spring.cloud.dataflow.features.tasks-enabled

• spring.cloud.dataflow.features.analytics-enabled

By default, all the features are enabled. Note: Since analytics feature is enabled by default, the Data
Flow server is expected to have a valid Redis store available as analytic repository as we provide a
default implementation of analytics based on Redis. This also means that the Data Flow server’s health
depends on the redis store availability as well. If you do not want to enabled HTTP endpoints to read
analytics data written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint /features provides information on the features enabled/disabled.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 23

13. Database Configuration

A relational database is used to store stream and task definitions as well as the state of executed
tasks. Spring Cloud Data Flow provides schemas for H2, HSQLDB, MySQL, Oracle, Postgresql, DB2
and SqlServer that will be automatically created when the server starts. Out of the box Spring Cloud
Data Flow offers an embedded instance of the H2 database. The H2 database is good for development
purposes but is not recommended for production use.

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other database, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

The database properties can be passed as environment variables or command-line arguments to the
Data Flow Server.

• Environment variables:

export spring_datasource_url=jdbc:postgresql://localhost:5432/mydb

export spring_datasource_username=myuser

export spring_datasource_password=mypass

export spring_datasource_driver-class-name="org.postgresql.Driver"

• Command Line arguments If you are using MySQL:

java -jar spring-cloud-dataflow-server-local/target/spring-cloud-dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar \

 --spring.datasource.url=jdbc:mysql:<db-info> \

 --spring.datasource.username=<user> \

 --spring.datasource.password=<password> \

 --spring.datasource.driver-class-name=org.mariadb.jdbc.Driver &

If you are using PostgreSQL:

java -jar spring-cloud-dataflow-server-local/target/spring-cloud-dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar \

 --spring.datasource.url=jdbc:postgresql:<db-info> \

 --spring.datasource.username=<user> \

 --spring.datasource.password=<password> \

 --spring.datasource.driver-class-name=org.postgresql.Driver &

If you are using HSQLDB:

java -jar spring-cloud-dataflow-server-local/target/spring-cloud-dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar \

 --spring.datasource.url=jdbc:hsqldb:<db-info> \

 --spring.datasource.username=SA \

 --spring.datasource.driver-class-name=org.hsqldb.jdbc.JDBCDriver &

Note

There is a schema update to the Spring Cloud Data Flow datastore when upgrading from version
1.0.x to 1.1.x. Migration scripts for specific database types can be found here.

Note

If you wish to use an external H2 database instance instead of the one embedded with Spring
Cloud Data Flow set the spring.dataflow.embedded.database.enabled property to
false. If spring.dataflow.embedded.database.enabled is set to false or a database
other than h2 is specified as the datasource the embedded database will not start.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 24

13.1 Adding a custom JDBC driver

To add a custom driver for the database, for example Oracle, it is recommended that you rebuild the
Data Flow server and add the dependency to the Maven pom.xml file. Since there is a Spring Cloud
Data Flow Server for each target platform, you will need to modify the appropriate maven pom.xml for
each platform. There are tags in each github repository for each server version.

To add a custom JDBC driver dependency for the local server implementation:

1. Select the tag that corresponds to the version of the server you want to rebuild and clone the github
repository.

2. Edit the spring-cloud-dataflow-server-local/pom.xml and in the dependencies section add the
dependency for the database driver required. In the sample below, and Oracle driver has been
chosen.

<dependencies>

...

 <dependency>

 <groupId>com.oracle.jdbc</groupId>

 <artifactId>ojdbc8</artifactId>

 <version>12.2.0.1</version>

 </dependency>

...

</dependencies>

3. Build the application as described here: Building Spring Cloud Data Flow

You can also provide default values when rebuilding the server by adding the following properties to
the dataflow-server.yml file

For example adding postgres would look something like this:

• dataflow-server.yml

spring:

 datasource:

 url: jdbc:postgresql://localhost:5432/mydb

 username: myuser

 password: mypass

 driver-class-name:org.postgresql.Driver

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 25

14. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate using either:

• OAuth 2.0

• Traditional Authentication (Incl. Basic Authentication)

Figure 14.1. Authentication Options

When choosing traditional authentication, the Spring Cloud Data Flow server will be the main
authentication point, using Spring Security under the covers. When selecting this option, users then
need to further define their preferred authentication mechanism aka select the desired authentication
backing store:

• Single User Authentication

• Ldap Authentication

• File-based authentication

When choosing between traditional authentication or OAuth2, keep in mind that both options are
mutually exclusive. Please refer to the sub-chapters below for a more detailed discussion.

Note

By default, the REST endpoints (administration, management and health), as well as the
Dashboard UI do not require authenticated access.

14.1 Enabling HTTPS

By default, the dashboard, management, and health endpoints use HTTP as a transport. You can switch
to HTTPS easily, by adding a certificate to your configuration in application.yml.

server:

 port: 8443 ❶

 ssl:

 key-alias: yourKeyAlias ❷

 key-store: path/to/keystore ❸

 key-store-password: yourKeyStorePassword ❹

 key-password: yourKeyPassword ❺

 trust-store: path/to/trust-store ❻

 trust-store-password: yourTrustStorePassword ❼

https://oauth.net/2/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 26

❶ As the default port is 9393, you may choose to change the port to a more common HTTPs-typical
port.

❷ The alias (or name) under which the key is stored in the keystore.

❸ The path to the keystore file. Classpath resources may also be specified, by using the classpath
prefix: classpath:path/to/keystore

❹ The password of the keystore.

❺ The password of the key.

❻ The path to the truststore file. Classpath resources may also be specified, by using the classpath
prefix: classpath:path/to/trust-store

❼ The password of the trust store.

Note

If HTTPS is enabled, it will completely replace HTTP as the protocol over which the REST
endpoints and the Data Flow Dashboard interact. Plain HTTP requests will fail - therefore, make
sure that you configure your Shell accordingly.

Using Self-Signed Certificates

For testing purposes or during development it might be convenient to create self-signed certificates. To
get started, execute the following command to create a certificate:

$ keytool -genkey -alias dataflow -keyalg RSA -keystore dataflow.keystore \

 -validity 3650 -storetype JKS \

 -dname "CN=localhost, OU=Spring, O=Pivotal, L=Kailua-Kona, ST=HI, C=US" ❶

 -keypass dataflow -storepass dataflow

❶ CN is the only important parameter here. It should match the domain you are trying to access,
e.g. localhost.

Then add the following to your application.yml file:

server:

 port: 8443

 ssl:

 enabled: true

 key-alias: dataflow

 key-store: "/your/path/to/dataflow.keystore"

 key-store-type: jks

 key-store-password: dataflow

 key-password: dataflow

This is all that’s needed for the Data Flow Server. Once you start the server, you should be able to
access it via https://localhost:8443/. As this is a self-signed certificate, you will hit a warning in your
browser, that you need to ignore.

Self-Signed Certificates and the Shell

By default self-signed certificates are an issue for the Shell and additional steps are necessary to make
the Shell work with self-signed certificates. Two options are available:

1. Add the self-signed certificate to the JVM truststore

2. Skip certificate validation

Add the self-signed certificate to the JVM truststore

https://localhost:8443/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 27

In order to use the JVM truststore option, we need to export the previously created certificate from the
keystore:

$ keytool -export -alias dataflow -keystore dataflow.keystore -file dataflow_cert -storepass dataflow

Next, we need to create a truststore which the Shell will use:

$ keytool -importcert -keystore dataflow.truststore -alias dataflow -storepass dataflow -file

 dataflow_cert -noprompt

Now, you are ready to launch the Data Flow Shell using the following JVM arguments:

$ java -Djavax.net.ssl.trustStorePassword=dataflow \

 -Djavax.net.ssl.trustStore=/path/to/dataflow.truststore \

 -Djavax.net.ssl.trustStoreType=jks \

 -jar spring-cloud-dataflow-shell-1.2.4.BUILD-SNAPSHOT.jar

Tip

In case you run into trouble establishing a connection via SSL, you can enable additional logging
by using and setting the javax.net.debug JVM argument to ssl.

Don’t forget to target the Data Flow Server with:

dataflow:> dataflow config server https://localhost:8443/

Skip Certificate Validation

Alternatively, you can also bypass the certification validation by providing the optional command-line
parameter --dataflow.skip-ssl-validation=true.

Using this command-line parameter, the shell will accept any (self-signed) SSL certificate.

Warning

If possible you should avoid using this option. Disabling the trust manager defeats the purpose
of SSL and makes you vulnerable to man-in-the-middle attacks.

14.2 Traditional Authentication

When using traditional authentication Spring Cloud Data Flow will be the sole authentication provider.
In that case Dataflow REST API users would use Basic Authentication to access the endpoints.

When using that option, users have a choice of 3 backing stores for authentication details:

• Single User Authentication using Spring Boot properties

• File-based authentication for multiple users using a Yaml file

• Ldap Authentication

Single User Authentication

This is the simplest option and mimics the behavior of the default Spring Boot user user-experience. It
can be enabled by adding the following to application.yml or via environment variables:

https://en.wikipedia.org/wiki/Basic_access_authentication

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 28

security:

 basic:

 enabled: true ❶

 realm: Spring Cloud Data Flow ❷

❶ Enables basic authentication. Must be set to true for security to be enabled.

❷ (Optional) The realm for Basic authentication. Will default to Spring if not explicitly set.

Note

Current versions of Chrome do not display the realm. Please see the following Chromium issue
ticket for more information.

In this use-case, the underlying Spring Boot will auto-create a user called user with an auto-generated
password which will be printed out to the console upon startup.

With this setup, the generated user will have all main roles assigned:

• VIEW

• CREATE

• MANAGE

Figure 14.2. Default Spring Boot user credentials

You can customize the user yourself using the following properties:

security.user.name=user # Default user name.

security.user.password= # Password for the default user name. A random password is logged on startup by

 default.

security.user.role=VIEW, CREATE, MANAGE # Granted roles for the default user name.

Note

Please be aware of inherent issues of Basic Authentication and logging out, since the credentials
are cached by the browser and simply browsing back to application pages will log you back in.

Of course, you can also pass in credentials using system properties, environment variables or command-
line arguments as this is standard Spring Boot behavior. For instance in the following example,
command-line arguments are used to specify the user credentials:

$ java -jar spring-cloud-dataflow-server-local-1.2.4.BUILD-SNAPSHOT.jar\

 --security.basic.enabled=true \

 --security.user.name=test \

 --security.user.password=pass \

 --security.user.role=VIEW

If you need to define more than one file-based user account, please take a look at File based
authentication.

https://bugs.chromium.org/p/chromium/issues/detail?id=544244
https://bugs.chromium.org/p/chromium/issues/detail?id=544244

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 29

File based authentication

By default Spring Boot allows you to only specify one single user. Spring Cloud Data Flow also supports
the listing of more than one user in a configuration file, as described below. Each user must be assigned
a password and one or more roles:

security:

 basic:

 enabled: true

 realm: Spring Cloud Data Flow

spring:

 cloud:

 dataflow:

 security:

 authentication:

 file:

 enabled: true ❶

 users: ❷

 bob: bobspassword, ROLE_MANAGE ❸

 alice: alicepwd, ROLE_VIEW, ROLE_CREATE

❶ Enables file based authentication

❷ This is a yaml map of username to password

❸ Each map value is made of a corresponding password and role(s), comma separated

LDAP Authentication

Spring Cloud Data Flow also supports authentication against an LDAP server (Lightweight Directory
Access Protocol), providing support for the following 2 modes:

• Direct bind

• Search and bind

When the LDAP authentication option is activated, the default single user mode is turned off.

In direct bind mode, a pattern is defined for the user’s distinguished name (DN), using a placeholder for
the username. The authentication process derives the distinguished name of the user by replacing the
placeholder and use it to authenticate a user against the LDAP server, along with the supplied password.
You can set up LDAP direct bind as follows:

security:

 basic:

 enabled: true

 realm: Spring Cloud Data Flow

spring:

 cloud:

 dataflow:

 security:

 authentication:

 ldap:

 enabled: true ❶

 url: ldap://ldap.example.com:3309 ❷

 userDnPattern: uid={0},ou=people,dc=example,dc=com ❸

❶ Enables LDAP authentication

❷ The URL for the LDAP server

❸ The distinguished name (DN) pattern for authenticating against the server

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 30

The search and bind mode involves connecting to an LDAP server, either anonymously or with a fixed
account, and searching for the distinguished name of the authenticating user based on its username,
and then using the resulting value and the supplied password for binding to the LDAP server. This option
is configured as follows:

security:

 basic:

 enabled: true

 realm: Spring Cloud Data Flow

spring:

 cloud:

 dataflow:

 security:

 authentication:

 ldap:

 enabled: true ❶

 url: ldap://localhost:10389 ❷

 managerDn: uid=admin,ou=system ❸

 managerPassword: secret ❹

 userSearchBase: ou=otherpeople,dc=example,dc=com ❺

 userSearchFilter: uid={0} ❻

❶ Enables LDAP integration

❷ The URL of the LDAP server

❸ A DN for to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with next option)

❹ A password to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with previous option)

❺ The base for searching the DN of the authenticating user (serves to restrict the scope of the search)

❻ The search filter for the DN of the authenticating user

Tip

For more information, please also see the chapter LDAP Authentication of the Spring Security
reference guide.

LDAP Transport Security

When connecting to an LDAP server, you typically (In the LDAP world) have 2 options in order to
establish a connection to an LDAP server securely:

• LDAP over SSL (LDAPs)

• Start Transport Layer Security (Start TLS is defined in RFC2830)

As of Spring Cloud Data Flow 1.1.0 only LDAPs is supported out-of-the-box. When using official
certificates no special configuration is necessary, in order to connect to an LDAP Server via LDAPs.
Just change the url format to ldaps, e.g. ldaps://localhost:636.

In case of using self-signed certificates, the setup for your Spring Cloud Data Flow server becomes
slightly more complex. The setup is very similar to the section called “Using Self-Signed Certificates”
(Please read first) and Spring Cloud Data Flow needs to reference a trustStore in order to work with
your self-signed certificates.

Important

While useful during development and testing, please never use self-signed certificates in
production!

http://docs.spring.io/spring-security/site/docs/current/reference/html/ldap.html
https://www.ietf.org/rfc/rfc2830.txt

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 31

Ultimately you have to provide a set of system properties to reference the trustStore and its credentials
when starting the server:

$ java -Djavax.net.ssl.trustStorePassword=dataflow \

 -Djavax.net.ssl.trustStore=/path/to/dataflow.truststore \

 -Djavax.net.ssl.trustStoreType=jks \

 -jar spring-cloud-starter-dataflow-server-local-1.2.4.BUILD-SNAPSHOT.jar

As mentioned above, another option to connect to an LDAP server securely is via Start TLS. In the LDAP
world, LDAPs is technically even considered deprecated in favor of Start TLS. However, this option is
currently not supported out-of-the-box by Spring Cloud Data Flow.

Please follow the following issue tracker ticket to track its implementation. You may also want to look
at the Spring LDAP reference documentation chapter on Custom DirContext Authentication Processing
for further details.

Shell Authentication

When using traditional authentication with the Data Flow Shell, you typically provide a username and
password using command-line arguments, e.g.:

$ java -jar target/spring-cloud-dataflow-shell-1.2.4.BUILD-SNAPSHOT.jar \

 --dataflow.username=myuser \ ❶

 --dataflow.password=mysecret ❷

❶ If authentication is enabled the username must be provided

❷ If the password is not provided, the shell will prompt for it

Alternatively, you can target a Data Flow server also from within the Shell:

server-unknown:>dataflow config server

 --uri http://localhost:9393 \ ❶

 --username myuser \ ❷

 --password mysecret \ ❸

 --skip-ssl-validation true \ ❹

❶ Optional, defaults to localhost:9393

❷ Mandatory if security is enabled

❸ If security is enabled, and the password is not provided, the user will be promted for it

❹ Optional, ignores certificate errors (When using self-signed certificates). Use cautiously!

Figure 14.3. Target and Authenticate with the Data Flow Server from within the Shell

Customizing authorization

All of the above deals with authentication, i.e. how to assess the identity of the user. Irrespective of the
option chosen, you can also customize authorization i.e. who can do what.

The default scheme uses three roles to protect the REST endpoints that Spring Cloud Data Flow
exposes:

https://github.com/spring-cloud/spring-cloud-dataflow/issues/963
http://docs.spring.io/spring-ldap/docs/current/reference/#custom-dircontext-authentication-processing
http://localhost:9393

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 32

• ROLE_VIEW for anything that relates to retrieving state

• ROLE_CREATE for anything that involves creating, deleting or mutating the state of the system

• ROLE_MANAGE for boot management endpoints.

All of those defaults are specified in dataflow-server-defaults.yml which is part of the
Spring Cloud Data Flow Core Module. Nonetheless, you can override those, if desired, e.g. in
application.yml. The configuration takes the form of a YAML list (as some rules may have
precedence over others) and so you’ll need to copy/paste the whole list and tailor it to your needs (as
there is no way to merge lists). Always refer to your version of application.yml, as the snippet
reproduced below may be out-dated. The default rules are as such:

spring:

 cloud:

 dataflow:

 security:

 authorization:

 enabled: true

 rules:

 # Metrics

 - GET /metrics/streams => hasRole('ROLE_VIEW')

 # About

 - GET /about => hasRole('ROLE_VIEW')

 # Metrics

 - GET /metrics/** => hasRole('ROLE_VIEW')

 - DELETE /metrics/** => hasRole('ROLE_CREATE')

 # Boot Endpoints

 - GET /management/** => hasRole('ROLE_MANAGE')

 # Apps

 - GET /apps => hasRole('ROLE_VIEW')

 - GET /apps/** => hasRole('ROLE_VIEW')

 - DELETE /apps/** => hasRole('ROLE_CREATE')

 - POST /apps => hasRole('ROLE_CREATE')

 - POST /apps/** => hasRole('ROLE_CREATE')

 # Completions

 - GET /completions/** => hasRole('ROLE_CREATE')

 # Job Executions & Batch Job Execution Steps && Job Step Execution Progress

 - GET /jobs/executions => hasRole('ROLE_VIEW')

 - PUT /jobs/executions/** => hasRole('ROLE_CREATE')

 - GET /jobs/executions/** => hasRole('ROLE_VIEW')

 # Batch Job Instances

 - GET /jobs/instances => hasRole('ROLE_VIEW')

 - GET /jobs/instances/* => hasRole('ROLE_VIEW')

 # Running Applications

 - GET /runtime/apps => hasRole('ROLE_VIEW')

 - GET /runtime/apps/** => hasRole('ROLE_VIEW')

 # Stream Definitions

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 33

 - GET /streams/definitions => hasRole('ROLE_VIEW')

 - GET /streams/definitions/* => hasRole('ROLE_VIEW')

 - GET /streams/definitions/*/related => hasRole('ROLE_VIEW')

 - POST /streams/definitions => hasRole('ROLE_CREATE')

 - DELETE /streams/definitions/* => hasRole('ROLE_CREATE')

 - DELETE /streams/definitions => hasRole('ROLE_CREATE')

 # Stream Deployments

 - DELETE /streams/deployments/* => hasRole('ROLE_CREATE')

 - DELETE /streams/deployments => hasRole('ROLE_CREATE')

 - POST /streams/deployments/* => hasRole('ROLE_CREATE')

 # Task Definitions

 - POST /tasks/definitions => hasRole('ROLE_CREATE')

 - DELETE /tasks/definitions/* => hasRole('ROLE_CREATE')

 - GET /tasks/definitions => hasRole('ROLE_VIEW')

 - GET /tasks/definitions/* => hasRole('ROLE_VIEW')

 # Task Executions

 - GET /tasks/executions => hasRole('ROLE_VIEW')

 - GET /tasks/executions/* => hasRole('ROLE_VIEW')

 - POST /tasks/executions => hasRole('ROLE_CREATE')

 - DELETE /tasks/executions/* => hasRole('ROLE_CREATE')

The format of each line is the following:

HTTP_METHOD URL_PATTERN '=>' SECURITY_ATTRIBUTE

where

• HTTP_METHOD is one http method, capital case

• URL_PATTERN is an Ant style URL pattern

• SECURITY_ATTRIBUTE is a SpEL expression (see docs.spring.io/spring-security/site/docs/current/
reference/htmlsingle/#el-access)

• each of those separated by one or several blank characters (spaces, tabs, etc.)

Be mindful that the above is indeed a YAML list, not a map (thus the use of '-' dashes at the start of each
line) that lives under the spring.cloud.dataflow.security.authorization.rules key.

Tip

In case you are solely interested in authentication but not authorization, for instance
every user shall have have access to all endpoints, then you can also set
spring.cloud.dataflow.security.authorization.enabled=false.

If you are using basic security configuration by using security properties then it is important to set the
roles for the users.

For instance,

java -jar spring-cloud-dataflow-server-local/target/spring-cloud-dataflow-server-local-1.2.4.BUILD-

SNAPSHOT.jar \

 --security.basic.enabled=true \

 --security.user.name=test \

 --security.user.password=pass \

 --security.user.role=VIEW

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#el-access
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#el-access

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 34

Authorization - Shell and Dashboard Behavior

When authorization is enabled, the Dashboard and the Shell will be role-aware, meaning that depending
on the assigned role(s), not all functionality may be visible.

For instance, Shell commands, for which the user does not have the necessary roles for, will be marked
as unavailable.

Important

Currently, the Shell’s help command will list commands that are unavailable. Please track the
following issue: github.com/spring-projects/spring-shell/issues/115

Similarly for the Dashboard, the UI will not show pages, or page elements, for which the user is not
authorized for.

Authorization with Ldap

When configuring Ldap for authentication, you can also specify the group-role-attribute in
conjunction with group-search-base and group-search-filter.

The group role attribure contains the name of the role. If not specified, the ROLE_MANAGE role is
populated by default.

For further information, please refer to Configuring an LDAP Server of the Spring Security reference
guide.

14.3 OAuth 2.0

OAuth 2.0 allows you to integrate Spring Cloud Data Flow into Single Sign On (SSO) environments.
The following 3 OAuth2 Grant Types will be used:

• Authorization Code - Used for the GUI (Browser) integration. You will be redirected to your OAuth
Service for authentication

• Password - Used by the shell (And the REST integration), so you can login using username and
password

• Client Credentials - Retrieve an Access Token directly from your OAuth provider and pass it to the
Dataflow server using the Authorization Http header.

The REST endpoints can be accessed using 2 ways:

• Basic Authentication which will use the Password Grant Type under the covers to authenticate with
your OAuth2 service

• Access Token which will use the Client Credentials Grant Type under the covers

Note

When authentication is set up, it is strongly recommended to enable HTTPS as well, especially
in production environments.

You can turn on OAuth2 authentication by adding the following to application.yml or via
environment variables:

https://github.com/spring-projects/spring-shell/issues/115
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#loading-authorities
https://oauth.net/2/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 35

security:

 oauth2:

 client:

 client-id: myclient ❶

 client-secret: mysecret

 access-token-uri: http://127.0.0.1:9999/oauth/token

 user-authorization-uri: http://127.0.0.1:9999/oauth/authorize

 resource:

 user-info-uri: http://127.0.0.1:9999/me

❶ Providing the Client Id in the OAuth Configuration Section will activate OAuth2 security

You can verify that basic authentication is working properly using curl:

$ curl -u myusername:mypassword http://localhost:9393/

As a result you should see a list of available REST endpoints.

Besides Basic Authentication, you can also provide an Access Token in order to access the REST Api.
In order to make that happen, you would retrieve an OAuth2 Access Token from your OAuth2 provider
first, and then pass that Access Token to the REST Api using the Authorization Http header:

$ curl -H "Authorization: Bearer <ACCESS_TOKEN>" http://localhost:9393/

OAuth REST Endpoint Authorization

The OAuth2 authentication option uses the same authorization rules as used by the Traditional
Authentication option.

Tip

The authorization rules are defined in dataflow-server-defaults.yml (Part of the Spring
Cloud Data Flow Core Module). Please see the chapter on customizing authorization for more
details.

Due to fact that the determination of security roles is very environment-specific, Spring
Cloud Data Flow will by default assign all roles to authenticated OAuth2 users using the
DefaultDataflowAuthoritiesExtractor class.

You can customize that behavior by providing your own Spring bean definition that extends Spring
Security OAuth’s AuthoritiesExtractor interface. In that case, the custom bean definition will take
precedence over the default one provided by Spring Cloud Data Flow

OAuth Authentication using the Spring Cloud Data Flow Shell

If your OAuth2 provider supports the Password Grant Type you can start the Data Flow Shell with:

$ java -jar spring-cloud-dataflow-shell-1.2.4.BUILD-SNAPSHOT.jar \

 --dataflow.uri=http://localhost:9393 \

 --dataflow.username=my_username --dataflow.password=my_password

Note

Keep in mind that when authentication for Spring Cloud Data Flow is enabled, the underlying
OAuth2 provider must support the Password OAuth2 Grant Type, if you want to use the Shell.

From within the Data Flow Shell you can also provide credentials using:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 36

dataflow config server --uri http://localhost:9393 --username my_username --password my_password

Once successfully targeted, you should see the following output:

dataflow:>dataflow config info

dataflow config info

###

#Credentials#[username='my_username, password=****']#

###

#Result # #

#Target #http://localhost:9393 #

###

OAuth2 Authentication Examples

Local OAuth2 Server

With Spring Security OAuth you can easily create your own OAuth2 Server with the following 2 simple
annotations:

• @EnableResourceServer

• @EnableAuthorizationServer

A working example application can be found at:

https://github.com/ghillert/oauth-test-server/

Simply clone the project, built and start it. Furthermore configure Spring Cloud Data Flow with the
respective Client Id and Client Secret.

Authentication using GitHub

If you rather like to use an existing OAuth2 provider, here is an example for GitHub. First you need to
Register a new application under your GitHub account at:

https://github.com/settings/developers

When running a default version of Spring Cloud Data Flow locally, your GitHub configuration should
look like the following:

http://projects.spring.io/spring-security-oauth/
https://github.com/ghillert/oauth-test-server/
https://github.com/settings/developers

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 37

Figure 14.4. Register an OAuth Application for GitHub

Note

For the Authorization callback URL you will enter Spring Cloud Data Flow’s Login URL, e.g.
localhost:9393/login.

Configure Spring Cloud Data Flow with the GitHub relevant Client Id and Secret:

security:

 oauth2:

 client:

 client-id: your-github-client-id

 client-secret: your-github-client-secret

 access-token-uri: https://github.com/login/oauth/access_token

 user-authorization-uri: https://github.com/login/oauth/authorize

 resource:

 user-info-uri: https://api.github.com/user

Important

GitHub does not support the OAuth2 password grant type. As such you cannot use the Spring
Cloud Data Flow Shell in conjunction with GitHub.

14.4 Securing the Spring Boot Management Endpoints

When enabling security, please also make sure that the Spring Boot HTTP Management Endpoints
are secured as well. You can enable security for the management endpoints by adding the following
to application.yml:

management:

 contextPath: /management

http://localhost:9393/login
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-monitoring.html

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 38

 security:

 enabled: true

Important

If you don’t explicitly enable security for the management endpoints, you may end up having
unsecured REST endpoints, despite security.basic.enabled being set to true.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 39

15. Monitoring and Management

The Spring Cloud Data Flow server is a Spring Boot application that includes the Actuator library, which
adds several production ready features to help you monitor and manage your application.

The Actuator library adds http endpoints under the context path /management that is also a discovery
page for available endpoints. For example, there is a health endpoint that shows application health
information and an env that lists properties from Spring’s ConfigurableEnvironment. By default
only the health and application info endpoints are accessible. The other endpoints are considered to
be sensitive and need to be enabled explicitly via configuration. If you are enabling sensitive endpoints
then you should also secure the Data Flow server’s endpoints so that information is not inadvertently
exposed to unauthenticated users. The local Data Flow server has security disabled by default, so all
actuator endpoints are available.

The Data Flow server requires a relational database and if the feature toggled for analytics is enabled,
a Redis server is also required. The Data Flow server will autoconfigure the DataSourceHealthIndicator
and RedisHealthIndicator if needed. The health of these two services is incorporated to the overall health
status of the server through the health endpoint.

15.1 Spring Boot Admin

A nice way to visualize and interact with actuator endpoints is to incorporate the Spring Boot Admin
client library into the Spring Cloud Data Flow server. You can create the Spring Boot Admin application
by following a few simple steps.

A simple way to have the Spring Cloud Data Flow server be a client to the Spring Boot Admin Server is
by adding a dependency to the Data Flow server’s Maven pom.xml file and an additional configuration
property as documented in Registering Client Applications. You will need to clone the github repository
for the Spring Cloud Data Flow server in order to modify the Maven pom. There are tags in the repository
for each release.

Adding this dependency will result in a UI with tabs for each of the actuator endpoints.

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-customizing-endpoints
https://github.com/spring-projects/spring-boot/blob/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/blob/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RedisHealthIndicator.java
https://github.com/codecentric/spring-boot-admin
http://codecentric.github.io/spring-boot-admin/1.4.3/#set-up-admin-server
http://codecentric.github.io/spring-boot-admin/1.4.3/#register-clients-via-spring-boot-admin

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 40

Figure 15.1. Spring Boot Admin UI

Additional configuration is required to interact with JMX beans and logging levels. Refer to the Spring
Boot admin documentation for more information. As only the info and health endpoints are available
to unauthenticated users, you should enable security on the Data Flow Server and also configure Spring
Boot Admin server’s security so that it can securely access the actuator endpoints.

15.2 Monitoring Deployed Applications

The applications that are deployed by Spring Cloud Data Flow are based on Spring Boot which contains
several features for monitoring your application in production. Each deployed application contains
several web endpoints for monitoring and interacting with Stream and Task applications.

In particular, the /metrics endpoint contains counters and gauges for HTTP requests, System
Metrics (such as JVM stats), DataSource Metrics and Message Channel Metrics (such as message
rates). Spring Boot lets you add your own metrics to the /metrics endpoint either by registering an
implementation of the PublicMetrics interface or through it’s integration with Dropwizard.

The Spring Boot interfaces MetricWriter and Exporter are used to send the metrics data to a place
where they can be displayed and analyzed. There are implementations in Spring Boot to export metrics
to Redis, Open TSDB, Statsd, and JMX.

There are a few additional Spring projects that provide support for sending metrics data to external
systems.

• Spring Cloud Stream provides ApplicationMetricsExporter which publishes metrics via an
Emitter to a messaging middleware destination.

http://codecentric.github.io/spring-boot-admin/1.4.3/#_securing_spring_boot_admin_server
http://codecentric.github.io/spring-boot-admin/1.4.3/#_securing_spring_boot_admin_server
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-system-metrics
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-system-metrics
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-datasource-metrics
http://docs.spring.io/spring-integration/reference/htmlsingle/#mgmt-channel-features
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-public-metrics
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-dropwizard-metrics
http://cloud.spring.io/spring-cloud-stream/
https://github.com/spring-cloud/spring-cloud-stream/blob/v1.2.1.RELEASE/spring-cloud-stream-metrics/src/main/java/org/springframework/cloud/stream/metrics/config/Emitter.java

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 41

• Spring Cloud Data Flow Metrics Collector subscribes to the metrics destination and aggregates metric
messages published by the Spring Cloud Stream applications. It has an HTTP endpoint to access
the aggregated metrics.

• Spring Cloud Data Flow Metrics provides LogMetricWriter that writes to the log.

• Spring Cloud Data Flow Metrics Datadog Metrics provides DatadogMetricWriter that writes to
Datadog.

The Spring Cloud Stream Emitter is used by the Spring Cloud Stream App Starters project that provides
the most commonly used applications when creating Data Flow Streams.

The architecture when using Spring Cloud Stream’s Emitter, the Data Flow Metrics Collector, and the
Data Flow server is shown below.

Figure 15.2. Spring Cloud Data Flow Metrics Architecture

As with the App Starters, there is a Spring Boot uber jar artifact of the Metrics Collector for all of the
supported binders. You can find more information on building and running the Metrics Collector on its
project page.

The dataflow server now accepts an optional property
spring.cloud.dataflow.metrics.collector.uri, this property should point to the URI of your
deployed metrics collector app. For example, if you are running the metrics collector locally on port 8080
then start the server (local example) with the following command:

$ java -jar spring-cloud-dataflow-server-local-1.2.4.BUILD-SNAPSHOT.jar --

spring.cloud.dataflow.metrics.collector.uri=http://localhost:8080

The Metrics Collector can be secured with 'basic' authentication that
requires a username and password. To set the username and password,
use the properties spring.cloud.dataflow.metrics.collector.username and
spring.cloud.dataflow.metrics.collector.password.

The metrics for each application are published when the property
spring.cloud.stream.bindings.applicationMetrics.destination is set. This can be set

https://github.com/spring-cloud/spring-cloud-dataflow-metrics-collector
https://github.com/spring-cloud/spring-cloud-dataflow-metrics
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
https://www.datadoghq.com/
http://docs.spring.io/spring-cloud-stream/docs/Chelsea.SR1/reference/htmlsingle/index.html#_metrics_emitter
http://cloud.spring.io/spring-cloud-stream-app-starters/
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-collector

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 42

as any other application property when deploying an application in Data Flow. Since it is quite common
to want all applications in a stream to emit metrics, setting it at the Data Flow server level is a good
way to achieve that.

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.bindings.applicationMetrics.destination=metrics

Using the destination name metrics is a good choice as the Metrics Collector subscribes to that name
by default.

The next most common way to configure the metrics destination is using deployment properties. Here
is an example for the ticktock stream that uses the App Starters time and log applications.

app register --name time --type source --uri maven://org.springframework.cloud.stream.app:time-source-

rabbit:1.2.0.RELEASE

app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:log-sink-

rabbit:1.2.0.RELEASE

stream create --name foostream --definition "time | log"

stream deploy --name foostream --

properties "app.*.spring.cloud.stream.bindings.applicationMetrics.destination=metrics,deployer.*.count=2"

The Metrics Collector exposes aggregated metrics under the HTTP endpoint /collector/metrics in
JSON format. The Data Flow server accesses this endpoint in two distinct ways. The first is by exposing
a /metrics/streams HTTP endpoint that acts as a proxy to the Metrics Collector endpoint. This is
accessed by the UI when overlaying message rates on the Flo diagrams for each stream. It is also
accessed to enrich the Data Flow /runtime/apps endpoint that is exposed in the UI via the Runtime
tab and in the shell through the runtime apps command with message rates.

Figure 15.3. Stream Message Rates

By default, Data Flow will set the property

spring.cloud.stream.metrics.properties=spring.application.name,spring.application.index,spring.cloud.application.*,spring.cloud.dataflow.*

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 43

Which is the set of application properties values needed to perform aggregation. It will also set the
property

spring.metrics.export.triggers.application.includes=integration**`

since Data Flow will only display instantaneous input and output channel message rates. By default,
all metric values in the /metric endpoint are sent so restricting it reduces the size of the message
payload without impacting the functionality. Data Flow also exposes a guid property when displaying
metric data which is used track back to the specific application instance that generated the metric. The
guid value is platform dependent.

Note that you can override these defaults by setting then as you would any application property value.

Data Flow will not provide it’s own implementation to store and visualize historical metrics data. We
will integrate with existing ALM system by providing an Exporter application that consumes messages
from the same destination as the Metrics Collector and writes them to an existing ALM system. Which
specific ALM system we will support is driven by user demand. However, to serve as an example, we
will develop an Elastic Search exporter with a Grafana front end since it is open source.

15.3 Log and DataDog MetricWriter

If you prefer to have deployed applications bypass the centralized collection of metrics via the Metrics
Collector, you can use the MetricWriters in Spring Cloud Data Flow Metrics and Spring Cloud Data Flow
Metrics Datadog Metrics.

The Data Flow Metrics project provides the foundation for exporting Spring Boot metrics via
MetricWriters. It provides Spring Boots AutoConfiguration to setup the writing process and common
functionality such as defining a metric name prefix appropriate for your environement. For example, you
may want to includes the region where the application is running in addition to the application’s name
and stream/task to which it belongs. It also includes a LogMetricWriter so that metrics can be stored
into the log file. While very simple in approach, log files are often ingested into application monitoring
tools (such as Splunk) where they can be further processed to create dashboards of an application’s
performance.

To make use of this functionality, you will need to add additional dependencies into your Stream and
Task applications. To customize the "out of the box" Task and Stream applications you can use the
Data Flow Initializr to generate a project and then add to the generated Maven pom file the MetricWriter
implementation you want to use. The documentation on the Data Flow Metrics project pages provides
the additional information you need to get started.

https://github.com/spring-cloud/spring-cloud-dataflow-metrics
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
http://start-scs.cfapps.io/

Part V. Shell
In this section you will learn about the options for starting the Shell and more advanced functionality
relating to how it handles white spaces, quotes, and interpretation of SpEL expressions. The introductory
chapters to the Stream DSL and Composed Task DSL is a good place to start for the most common
usage of shell commands.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 45

16. Shell Options

The Shell is built upon the Spring Shell project. There are command line options generic to Spring Shell
and some specific to Data Flow. The shell takes the following command line options

unix:>java -jar spring-cloud-dataflow-shell-1.2.1.RELEASE.jar --help

Data Flow Options:

 --dataflow.uri=<uri> Address of the Data Flow Server [default: http://

localhost:9393].

 --dataflow.username=<USER> Username of the Data Flow Server [no default].

 --dataflow.password=<PASSWORD> Password of the Data Flow Server [no default].

 --dataflow.credentials-provider-command=<COMMAND> Executes an external command which must return an

 OAuth Access Token [no default].

 --dataflow.skip-ssl-validation=<true|false> Accept any SSL certificate (even self-signed)

 [default: no].

 --spring.shell.historySize=<SIZE> Default size of the shell log file [default: 3000].

 --spring.shell.commandFile=<FILE> Data Flow Shell executes commands read from the

 file(s) and then exits.

 --help This message.

The spring.shell.commandFile option is of note, as it can be used to point to an existing file which
contains all the shell commands to deploy one or many related streams and tasks. This is useful when
creating some scripts to help automate the deployment.

There is also a shell command

dataflow:>script --file <YOUR_AWESOME_SCRIPT>

This is useful to help modularize a complex script into multiple indepenent files.

https://projects.spring.io/spring-shell/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 46

17. Listing available commands

Typing help at the command prompt will give a listing of all available commands. Most of the commands
are for Data Flow functionality, but a few are general purpose.

! - Allows execution of operating system (OS) commands

clear - Clears the console

cls - Clears the console

date - Displays the local date and time

exit - Exits the shell

http get - Make GET request to http endpoint

http post - POST data to http endpoint

quit - Exits the shell

system properties - Shows the shell's properties

version - Displays shell version

Adding the name of the command to help will display additional information on how to invoke the
command.

dataflow:>help stream create

Keyword: stream create

Description: Create a new stream definition

 Keyword: ** default **

 Keyword: name

 Help: the name to give to the stream

 Mandatory: true

 Default if specified: '__NULL__'

 Default if unspecified: '__NULL__'

 Keyword: definition

 Help: a stream definition, using the DSL (e.g. "http --port=9000 | hdfs")

 Mandatory: true

 Default if specified: '__NULL__'

 Default if unspecified: '__NULL__'

 Keyword: deploy

 Help: whether to deploy the stream immediately

 Mandatory: false

 Default if specified: 'true'

 Default if unspecified: 'false'

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 47

18. Tab Completion

The shell command options can be completed in the shell by hitting the TAB key after the leading --.
For example, hitting TAB after stream create -- results in

dataflow:>stream create --

stream create --definition stream create --name

If you type --de and then hit tab, --definition will be expanded.

Tab completion is also available inside the stream or composed task DSL expression for application
or task properties. You can also use TAB to get hints in a stream DSL expression for what available
sources, processors, or sinks can be used.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 48

19. White space and quote rules

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor is being passed a SpEL expression that will be applied to any data it encounters:

transform --expression='new StringBuilder(payload).reverse()'

If the parameter value needs to embed a single quote, use two single quotes:

// Query is: Select * from /Customers where name='Smith'

scan --query='Select * from /Customers where name=''Smith'''

19.1 Quotes and Escaping

There is a Spring Shell based client that talks to the Data Flow Server that is responsible for parsing
the DSL. In turn, applications may have applications properties that rely on embedded languages, such
as the Spring Expression Language.

The shell, Data Flow DSL parser, and SpEL have rules about how they handle quotes and how syntax
escaping works. When combined together, confusion may arise. This section explains the rules that
apply and provides examples of the most complicated situations you will encounter when all three
components are involved.

It’s not always that complicated

If you don’t use the Data Flow shell, for example you’re using the REST API directly, or if
applications properties are not SpEL expressions, then escaping rules are simpler.

Shell rules

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

• a shell command is made of keys (--foo) and corresponding values. There is a special, key-less
mapping though, see below

• a value can not normally contain spaces, as space is the default delimiter for commands

• spaces can be added though, by surrounding the value with quotes (either single ['] or double ["]
quotes)

• if surrounded with quotes, a value can embed a literal quote of the same kind by prefixing it with a
backslash (\)

• Other escapes are available, such as \t, \n, \r, \f and unicode escapes of the form \uxxxx

• Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the shell supports the ! command to execute native shell commands. The ! accepts a
single, key-less argument. This is why the following works:

dataflow:>! rm foo

The argument here is the whole rm foo string, which is passed as is to the underlying shell.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 49

As another example, the following commands are strictly equivalent, and the argument value is foo
(without the quotes):

dataflow:>stream destroy foo

dataflow:>stream destroy --name foo

dataflow:>stream destroy "foo"

dataflow:>stream destroy --name "foo"

DSL parsing rules

At the parser level (that is, inside the body of a stream or task definition) the rules are the following:

• option values are normally parsed until the first space character

• they can be made of literal strings though, surrounded by single or double quotes

• To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the --expression option to the filter application are semantically equivalent
in the following examples:

filter --expression=payload>5

filter --expression="payload>5"

filter --expression='payload>5'

filter --expression='payload > 5'

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payload > 5 (without quotes).

Now, let’s imagine we want to test against string messages. If we’d like to compare the payload to the
SpEL literal string, "foo", this is how we could do:

filter --expression=payload=='foo' ❶

filter --expression='payload == ''foo''' ❷

filter --expression='payload == "foo"' ❸

❶ This works because there are no spaces. Not very legible though

❷ This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

❸ But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the shell, for example if when
calling the REST API directly. When entered inside the shell, chances are that the whole stream
definition will itself be inside double quotes, which would need escaping. The whole example then
becomes:

dataflow:>stream create foo --definition "http | filter --expression=payload='foo' | log"

dataflow:>stream create foo --definition "http | filter --expression='payload == ''foo''' | log"

dataflow:>stream create foo --definition "http | filter --expression='payload == \"foo\"' | log"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many applications accept options that are to
be interpreted as SpEL expressions, and as seen above, String literals are handled in a special way
there too. The rules are:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 50

• literals can be enclosed in either single or double quotes

• quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As a last example, assume you want to use the transform processor. This processor accepts an
expression option which is a SpEL expression. It is to be evaluated against the incoming message,
with a default of payload (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform --expression=payload

transform --expression='payload'

but very different from the following:

transform --expression="'payload'"

transform --expression='''payload'''

and other variations.

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string payload (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hello world, by creating a stream in the context of the Data Flow shell:

dataflow:>stream create foo --definition "http | transform --expression='''hello world''' | log" ❶

dataflow:>stream create foo --definition "http | transform --expression='\"hello world\"' | log" ❷

dataflow:>stream create foo --definition "http | transform --expression=\"'hello world'\" | log" ❸

❶ This uses single quotes around the string (at the Data Flow parser level), but they need to be
doubled because we’re inside a string literal (very first single quote after the equals sign)

❷❸ use single and double quotes respectively to encompass the whole string at the Data Flow parser
level. Hence, the other kind of quote can be used inside the string. The whole thing is inside the
--definition argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level)

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-processors.html#spring-clound-stream-modules-transform-processor

Part VI. Streams
This section goes into more detail about how you can create Streams which are a collection of Spring
Cloud Stream. It covers topics such as creating and deploying Streams.

If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 52

20. Introduction

Streams are a collection of long lived Spring Cloud Stream applications that communicate with each
other over messaging middleware. A text based DSL defines the configuration and data flow between
the applications. While many applications are provided for you to implement common use-cases, you
will typically create a custom Spring Cloud Stream application to implement custom business logic.

20.1 Stream Pipeline DSL

A stream is defined using a unix-inspired Pipeline syntax. The syntax uses vertical bars, also known as
"pipes" to connect multiple commands. The command ls -l | grep key | less in Unix takes
the output of the ls -l process and pipes it to the input of the grep key process. The output of
grep in turn is sent to the input of the less process. Each | symbol will connect the standard ouput
of the program on the left to the standard input of the command on the right. Data flows through the
pipeline from left to right.

In Data Flow, the Unix command is replaced by a Spring Cloud Stream application and each pipe
symbol represents connecting the input and output of applications via messaging middleware, such as
RabbitMQ or Apache Kafka.

Each Spring Cloud Stream application is registered under a simple name. The registration process
specifies where the application can be obtained, for example in a Maven Repository or a Docker registry.
You can find out more information on how to register Spring Cloud Stream applications in this section.
In Data Flow, we classify the Spring Cloud Stream applications as either Sources, Processors, or Sinks.

As a simple example consider the collection of data from an HTTP Source writing to a File Sink. Using
the DSL the stream description is:

http | file

A stream that involves some processing would be expresed as:

http | filter | transform | file

Stream definitions can be created using the shell’s create stream command. For example:

dataflow:> stream create --name httpIngest --definition "http | file"

The Stream DSL is passed in to the --definition command option.

The deployment of stream definitions is done via the shell’s stream deploy command.

dataflow:> stream deploy --name ticktock

The Getting Started section shows you how to start the server and how to start and use the Spring
Cloud Data Flow shell.

Note that shell is calling the Data Flow Servers' REST API. For more information on making HTTP
request directly to the server, consult the REST API Guide.

20.2 Application properties

Each application takes properties to customize its behavior. As an example the http source module
exposes a port setting which allows the data ingestion port to be changed from the default value.

http://cloud.spring.io/spring-cloud-stream/
https://en.wikipedia.org/wiki/Pipeline_(Unix)
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 53

dataflow:> stream create --definition "http --port=8090 | log" --name myhttpstream

This port property is actually the same as the standard Spring Boot server.port property. Data
Flow adds the ability to use the shorthand form port instead of server.port. One may also specify
the longhand version as well.

dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream

This shorthand behavior is discussed more in the section on the section called “Whitelisting application
properties”. If you have registered application property metadata you can use tab completion in the shell
after typing -- to get a list of candidate property names.

The shell provides tab completion for application properties and also the shell command app info
<appType>:<appName> provides additional documentation for all the supported properties.

Note

Supported Stream `<appType>’s are: source, processor, and sink

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 54

21. Lifecycle of Streams

21.1 Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT

dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/

myprocessor-1.2.3.jar

dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could do the following:

dataflow:>app register --name http --type source --uri maven://

org.springframework.cloud.stream.app:http-source-rabbit:1.2.1.BUILD-SNAPSHOT

dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:log-

sink-rabbit:1.2.1.BUILD-SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <type>.<name> and the values are the URIs.

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.2.1.BUILD-SNAPSHOT

sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.2.1.BUILD-SNAPSHOT

Then to import the apps in bulk, use the app import command and provide the location of the
properties file via --uri:

dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Maven bit.ly/Bacon-RELEASE-stream-
applications-rabbit-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-rabbit-maven

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 55

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Docker bit.ly/Bacon-RELEASE-stream-
applications-rabbit-docker

N/A

Kafka 0.9 + Maven bit.ly/Bacon-RELEASE-stream-
applications-kafka-09-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-kafka-09-maven

Kafka 0.9 + Docker bit.ly/Bacon-RELEASE-stream-
applications-kafka-09-docker

N/A

Kafka 0.10 + Maven bit.ly/Bacon-RELEASE-stream-
applications-kafka-10-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-kafka-10-maven

Kafka 0.10 + Docker bit.ly/Bacon-RELEASE-stream-
applications-kafka-10-docker

N/A

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release

Maven bit.ly/Belmont-GA-task-
applications-maven

bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
maven

Docker bit.ly/Belmont-GA-task-
applications-docker

N/A

You can find more information about the available task starters in the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dataflow:>app import --uri http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven

You can also pass the --local option (which is true by default) to indicate whether the properties file
location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

Warning

When using either app register or app import, if an app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the
pre-existing app coordinates, then include the --force option.

Note however that once downloaded, applications may be cached locally on the Data Flow
server, based on the resource location. If the resource location doesn’t change (even though the
actual resource bytes may be different), then it won’t be re-downloaded. When using maven://
resources on the other hand, using a constant location still may circumvent caching (if using
-SNAPSHOT versions).

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 56

Moreover, if a stream is already deployed and using some version of a registered app, then
(forcibly) re-registering a different app will have no effect until the stream is deployed anew.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Whitelisting application properties

Stream and Task applications are Spring Boot applications which are aware of many the section called
“Common application properties”, e.g. server.port but also families of properties such as those with
the prefix spring.jmx and logging. When creating your own application it is desirable to whitelist
properties so that the shell and the UI can display them first as primary properties when presenting
options via TAB completion or in drop-down boxes.

To whitelist application properties create a file named spring-configuration-metadata-
whitelist.properties in the META-INF resource directory. There are two property keys that can
be used inside this file. The first key is named configuration-properties.classes. The value
is a comma separated list of fully qualified @ConfigurationProperty class names. The second key
is configuration-properties.names whose value is a comma separated list of property names.
This can contain the full name of property, such as server.port or a partial name to whitelist a
category of property names, e.g. spring.jmx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spring-configuration-metadata-whitelist.properties
file

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

If we also wanted to add server.port to be white listed, then it would look like this:

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

configuration-properties.names=server.port

Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

</dependency>

Creating and using a dedicated metadata artifact

You can go a step further in the process of describing the main properties that your stream or task
app supports by creating a so-called metadata companion artifact. This simple jar file contains only the
Spring boot JSON file about configuration properties metadata, as well as the whitelisting file described
in the previous section.

Here is the contents of such an artifact, for the canonical log sink:

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 57

$ jar tvf log-sink-rabbit-1.2.1.BUILD-SNAPSHOT-metadata.jar

373848 META-INF/spring-configuration-metadata.json

 174 META-INF/spring-configuration-metadata-whitelist.properties

Note that the spring-configuration-metadata.json file is quite large. This is because it
contains the concatenation of all the properties that are available at runtime to the log sink (some
of them come from spring-boot-actuator.jar, some of them come from spring-boot-
autoconfigure.jar, even some more from spring-cloud-starter-stream-sink-log.jar,
etc.) Data Flow always relies on all those properties, even when a companion artifact is not available,
but here all have been merged into a single file.

To help with that (as a matter of fact, you don’t want to try to craft this giant JSON file by hand), you
can use the following plugin in your build:

<plugin>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-app-starter-metadata-maven-plugin</artifactId>

 <executions>

 <execution>

 <id>aggregate-metadata</id>

 <phase>compile</phase>

 <goals>

 <goal>aggregate-metadata</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

Note

This plugin comes in addition to the spring-boot-configuration-processor that
creates the individual JSON files. Be sure to configure the two!

The benefits of a companion artifact are manifold:

1. being way lighter (usually a few kilobytes, as opposed to megabytes for the actual app), they are
quicker to download, allowing quicker feedback when using e.g. app info or the Dashboard UI

2. as a consequence of the above, they can be used in resource constrained environments (such as
PaaS) when metadata is the only piece of information needed

3. finally, for environments that don’t deal with boot uberjars directly (for example, Docker-based
runtimes such as Kubernetes or Mesos), this is the only way to provide metadata about the properties
supported by the app.

Remember though, that this is entirely optional when dealing with uberjars. The uberjar itself also
includes the metadata in it already.

Using the companion artifact

Once you have a companion artifact at hand, you need to make the system aware of it so that it can
be used.

When registering a single app via app register, you can use the optional --metadata-uri option
in the shell, like so:

dataflow:>app register --name log --type sink

 --uri maven://org.springframework.cloud.stream.app:log-sink-kafka-10:1.2.1.BUILD-SNAPSHOT

 --metadata-uri=maven://org.springframework.cloud.stream.app:log-sink-

kafka-10:jar:metadata:1.2.1.BUILD-SNAPSHOT

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 58

When registering several files using the app import command, the file should contain a
<type>.<name>.metadata line in addition to each <type>.<name> line. This is optional (i.e. if some
apps have it but some others don’t, that’s fine).

Here is an example for a Dockerized app, where the metadata artifact is being hosted in a Maven
repository (but retrieving it via http:// or file:// would be equally possible).

...

source.http=docker:springcloudstream/http-source-rabbit:latest

source.http.metadata=maven://org.springframework.cloud.stream.app:http-source-

rabbit:jar:metadata:1.2.1.BUILD-SNAPSHOT

...

21.2 Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the Spring
Cloud Stream documentation. It is possible to include multiple binders to an application. If doing so,
refer the instructions in the section called “Passing Spring Cloud Stream properties for the application”
on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot configuration-processor as an optional dependency, as in the
following example.

<dependencies>

 <!-- other dependencies -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

 </dependency>

</dependencies>

Note

Make sure that the spring-boot-maven-plugin is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in Section 21.1, “Register
a Stream App”.

21.3 Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let’s walk through what happens if we execute the following shell command:

dataflow:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

https://github.com/spring-cloud/spring-cloud-stream
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_getting_started

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 59

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

dataflow:> stream deploy --name ticktock

The Data Flow Server resolves time and log to maven coordinates and uses those to launch the time
and log applications of the stream.

2016-06-01 09:41:21.728 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481708/ticktock.log

2016-06-01 09:41:21.914 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.time instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481910/ticktock.time

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the stdout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/

ticktock-1464788481708/ticktock.log/stdout_0.log

2016-06-01 09:45:11.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:11

2016-06-01 09:45:12.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:12

2016-06-01 09:45:13.251 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:13

Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

dataflow:> stream create --definition "time | log" --name ticktock

can have application properties defined at the time of stream creation.

The shell command app info <appType>:<appName> displays the white-listed application
properties for the application. For more info on the property white listing refer to the section called
“Whitelisting application properties”

Below are the white listed properties for the app time:

dataflow:> app info source:time

###

Option Name # Description # Default #

 Type #

###

#trigger.time-unit #The TimeUnit to apply to delay#<none>

 #java.util.concurrent.TimeUnit #

#values. # #

 #

#trigger.fixed-delay #Fixed delay for periodic #1

 #java.lang.Integer #

#triggers. # #

 #

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 60

#trigger.cron #Cron expression value for the #<none>

 #java.lang.String #

#Cron Trigger. # #

 #

#trigger.initial-delay #Initial delay for periodic #0

 #java.lang.Integer #

#triggers. # #

 #

#trigger.max-messages #Maximum messages per poll, -1 #1

 #java.lang.Long #

#means infinity. # #

 #

#trigger.date-format #Format for the date value. #<none>

 #java.lang.String #

###

Below are the white listed properties for the app log:

dataflow:> app info sink:log

###

Option Name # Description # Default #

 Type #

###

#log.name #The name of the logger to use.#<none>

 #java.lang.String #

#log.level #The level at which to log #<none>

 #org.springframework.integratio#

#messages. #

 #n.handler.LoggingHandler$Level#

#log.expression #A SpEL expression (against the#payload

 #java.lang.String #

#incoming message) to evaluate # #

 #

#as the logged message. # #

 #

###

The application properties for the time and log apps can be specified at the time of stream creation
as follows:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

Note that the properties fixed-delay and level defined above for the apps time and log are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as deployment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count.

Application properties versus Deployer properties

Starting with version 1.2, the distinction between properties that are meant for the deployed app
and properties that govern how this app is deployed (thanks to some implementation of a spring
cloud deployer) is more explicit. The former should be passed using the syntax app.<app-
name>.<property-name>=<value> while the latter use the deployer.<app-name>.<short-
property-name>=<value>

The following table recaps the difference in behavior between the two.

https://github.com/spring-cloud/spring-cloud-deployer/
https://github.com/spring-cloud/spring-cloud-deployer/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 61

 Application Properties Deployer Properties

Example Syntax app.filter.expression=foodeployer.filter.count=3

What the application "sees" expression=foo or <some-
prefix>.expression=foo

if expression is one of the
whitelisted properties

Nothing

What the deployer "sees" Nothing spring.cloud.deployer.count=3

The
spring.cloud.deployer

prefix is automatically and
always prepended to the
property name

Typical usage Passing/Overriding application
properties, passing Spring
Cloud Stream binder or
partitionning properties

Setting the number of
instances, memory, disk, etc.

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a deployer
property with the deploy command:

dataflow:> stream deploy --name ticktock --properties "deployer.time.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app.foo.bar.count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

Important

See ???.

Inline vs file reference properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the --properties shell option and list properties as a comma separated list of key=value
pairs, like so:

stream deploy foo

 --properties "deployer.transform.count=2,app.transform.producer.partitionKeyExpression=payload"

Using a file reference
use the --propertiesFile option and point it to a local .properties, .yaml or .yml file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a .properties file,

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 62

normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream deploy foo --propertiesFile myprops.properties

where myprops.properties contains:

deployer.transform.count=2

app.transform.producer.partitionKeyExpression=payload

Both the above properties will be passed as deployment properties for the stream foo above.

In case of using YAML as the format for the deployment properties, use the .yaml or .yml file extention
when deploying the stream,

stream deploy foo --propertiesFile myprops.yaml

where myprops.yaml contains:

deployer:

 transform:

 count: 2

app:

 transform:

 producer:

 partitionKeyExpression: payload

Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=5,app.log.level=ERROR"

When using the app label,

stream create ticktock --definition "a: time | b: log"

the application properties can be defined as:

stream deploy ticktock --properties "app.a.fixed-delay=4,app.b.level=ERROR"

Passing Spring Cloud Stream properties for the application

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spring.cloud.stream.bindings.<input/
output>.destination is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 63

For example, for the below stream

dataflow:> stream create --definition "http | transform --

expression=payload.getValue('hello').toUpperCase() | log" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.binder=kafka,app.transform.spring.cloud.stream.bindings.input.binder=kafka,app.transform.spring.cloud.stream.bindings.output.binder=rabbit,app.log.spring.cloud.stream.bindings.input.binder=rabbit"

Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per-binding
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partitionKeyExpression, partitionKeyExtractorClass as described in
the section called “Passing stream partition properties during stream deployment”, all the supported
Spring Cloud Stream producer/consumer properties can be set as Spring Cloud Stream properties for
the app directly as well.

The consumer properties can be set for the inbound channel name with the prefix app.
[app/label name].spring.cloud.stream.bindings.<channelName>.consumer. and the
producer properties can be set for the outbound channel name with the prefix app.[app/
label name].spring.cloud.stream.bindings.<channelName>.producer.. For example,
the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with producer/consumer properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.producer.requiredGroups=myGroup,app.time.spring.cloud.stream.bindings.output.producer.headerMode=raw,app.log.spring.cloud.stream.bindings.input.consumer.concurrency=3,app.log.spring.cloud.stream.bindings.input.consumer.maxAttempts=5"

The binder specific producer/consumer properties can also be specified in a similar way.

For instance

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.rabbit.bindings.output.producer.autoBindDlq=true,app.log.spring.cloud.stream.rabbit.bindings.input.consumer.transacted=true"

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 64

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default null)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractorClass is null. If both are null, the app is not partitioned (default null)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default null)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[nextModule].count. If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default null)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSelectorClass, if present, or the partitionSelectorExpression %

partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSelectorClass nor a partitionSelectorExpression is present the
result is key.hashCode() % partitionCount.

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the inputType and outputType properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dataflow:>stream create tuple --definition "http | filter --inputType=application/x-spring-tuple

 --expression=payload.hasFieldName('hello') | transform --

expression=payload.getValue('hello').toUpperCase()

 | log" --deploy

The http app is expected to send the data in JSON and the filter app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the inputType property on the filter app
to convert the data into the expected Spring Tuple format. The transform application processes the
Tuple data and sends the processed data to the downstream log application.

When sending some data to the http application:

dataflow:>http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://

localhost:<http-port>

At the log application you see the content as follows:

INFO 18745 --- [transform.tuple-1] log.sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the --outputType in the upstream app or as an --inputType in the downstream app. For
instance, in the above stream, instead of specifying the --inputType on the 'transform' application to

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 65

convert, the option --outputType=application/x-spring-tuple can also be specified on the
'http' application.

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream documentation.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

To override these application properties, one can specify the new property values during deployment:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=4,app.log.level=ERROR"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring.cloud.dataflow.applicationProperties.stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the Data Flow server with the following options:

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181

This will cause the properties spring.cloud.stream.kafka.binder.brokers and
spring.cloud.stream.kafka.binder.zkNodes to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app.http.spring.cloud.stream.kafka.binder.brokers will
override the common property).

21.4 Destroying a Stream

You can delete a stream by issuing the stream destroy command from the shell:

dataflow:> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

21.5 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#contenttypemanagement

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 66

dataflow:> stream undeploy --name ticktock

dataflow:> stream deploy --name ticktock

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 67

22. Stream DSL

This section covers additional features of the Stream DSL not covered in the Stream DSL introduction.

22.1 Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2:

 transform --expression=payload+'!' | log" --name mainstream --deploy

taps can be created at the output of http, step1 and step2.

To create a stream that acts as a 'tap' on another stream requires to specify the source destination
name for the tap stream. The syntax for source destination name is:

`:<streamName>.<label/appName>`

To create a tap at the output of http in the stream above, the source destination name is
mainstream.http To create a tap at the output of the first transform app in the stream above, the
source destination name is mainstream.step1

The tap stream DSL looks like this:

stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

22.2 Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() |

 secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy

22.3 Named Destinations

Instead of referencing a source or sink applications, you can use a named destination. A named
destination corresponds to a specific destination name in the middleware broker (Rabbit, Kafka, etc.,).
When using the | symbol, applications are connected to each other using messaging middleware
destination names created by the Data Flow server. In keeping with the unix analogy, one can redirect
standard input and output using the less-than < greater-than > charaters. To specify the name of the
destination, prefix it with a colon :. For example the following stream has the destination name in the
source position:

dataflow:>stream create --definition ":myDestination > log" --name ingest_from_broker --deploy

This stream receives messages from the destination myDestination located at the broker and
connects it to the log app. You can also create additional streams that will consume data from the
same named destination.

The following stream has the destination name in the sink position:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 68

dataflow:>stream create --definition "http > :myDestination" --name ingest_to_broker --deploy

It is also possible to connect two different destinations (source and sink positions) at the broker in
a stream.

dataflow:>stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy

In the above stream, both the destinations (destination1 and destination2) are located in the
broker. The messages flow from the source destination to the sink destination via a bridge app that
connects them.

22.4 Fan-in and Fan-out

Using named destinations, you can support Fan-in and Fan-out use cases. Fan-in use cases are when
multiple sources all send data to the same named destination. For example

s3 > :data

ftp > :data

http > :data

Would direct the data payloads from the Amazon S3, FTP, and HTTP sources to the same named
destination called data. Then an additional stream created with the DSL expression

:data > file

would have all the data from those three sources sent to the file sink.

The Fan-out use case is when you determine the destination of a stream based on some information
that is only known at runtime. In this case, the Router Application can be used to specify how to direct
the incoming message to one of N named destinations.

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-router-sink

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 69

23. Stream applications with multiple binder
configurations

In some cases, a stream can have its applications bound to multiple spring cloud stream binders when
they are required to connect to different messaging middleware configurations. In those cases, it is
important to make sure the applications are configured appropriately with their binder configurations.
For example, let’s consider the following stream:

http | transform --expression=payload.toUpperCase() | log

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1)

Transform processor receives events from RabbitMQ (rabbit1) and sends the processed events into Kafka

 (kafka1)

Log sink receives events from Kafka (kafka1)

Here, rabbit1 and kafka1 are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder

Transform - Both Kafka and Rabbit binders

Log - Kafka binder

The spring-cloud-stream binder configuration properties can be set within the applications themselves.
If not, they can be passed via deployment properties when the stream is deployed.

For example,

dataflow:>stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream

dataflow:>stream deploy mystream --properties

 "app.http.spring.cloud.stream.bindings.output.binder=rabbit1,app.transform.spring.cloud.stream.bindings.input.binder=rabbit1,

app.transform.spring.cloud.stream.bindings.output.binder=kafka1,app.log.spring.cloud.stream.bindings.input.binder=kafka1"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 70

24. Examples

24.1 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream --deploy

Posting some data (using a shell command)

dataflow:> http post --target http://localhost:1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

2016-06-01 09:54:37.749 INFO 80083 --- [kafka-binder-] log.sink : HELLO

24.2 Stateful Stream Processing

To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the
binder.

dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --

expression=payload.split(' ') | log"

Created new stream 'words'

dataflow:>stream deploy words --properties

 "app.splitter.producer.partitionKeyExpression=payload,deployer.log.count=2"

Deployed stream 'words'

dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a

 woodchuck could chuck wood"

> POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a

 woodchuck could chuck wood

> 202 ACCEPTED

You’ll see the following in the server logs.

2016-06-05 18:33:24.982 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 0

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

2016-06-05 18:33:24.988 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 1

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

Review the words.log instance 0 logs:

2016-06-05 18:35:47.047 INFO 58638 --- [kafka-binder-] log.sink : How

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

Review the words.log instance 1 logs:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 71

2016-06-05 18:35:47.047 INFO 58639 --- [kafka-binder-] log.sink :

 much

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 wood

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 would

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : if

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 could

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 wood

This shows that payload splits that contain the same word are routed to the same application instance.

24.3 Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

dataflow:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

2016-06-01 09:47:58.920 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log

2016-06-01 09:48:06.396 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.http instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dataflow:> runtime apps

You should see that the corresponding http source has a url property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

dataflow:> http post --target http://localhost:1234 --data "hello"

dataflow:> http post --target http://localhost:1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016-06-01 09:50:22.121 INFO 79654 --- [kafka-binder-] log.sink : hello

2016-06-01 09:50:26.810 INFO 79654 --- [kafka-binder-] log.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file), to
hadoop (hdfs) or to any of the other sink apps which are available. You can also define your own apps.

Part VII. Tasks
This section goes into more detail about how you can work with Spring Cloud Task. It covers topics
such as creating and running task applications.

If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 73

25. Introduction

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @EnableTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 74

26. The Lifecycle of a Task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Creating a Task Application

2. Registering a Task Application

3. Creating a Task Definition

4. Launching a Task

5. Reviewing Task Executions

6. Destroying a Task Definition

26.1 Creating a Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-
task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. Cloud Task - This dependency is the spring-cloud-starter-task.

b. JDBC - This is the dependency for the spring-jdbc starter.

2. Within your new project, create a new class that will serve as your main class:

@EnableTask

@SpringBootApplication

public class MyTask {

 public static void main(String[] args) {

 SpringApplication.run(MyTask.class, args);

 }

}

3. With this, you’ll need one or more CommandLineRunner or ApplicationRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an über jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.

Task Database Configuration

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 75

Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its UI, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

26.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dataflow:>app register --name task1 --type task --uri maven://com.example:mytask:1.0.2

dataflow:>app register --name task2 --type task --uri file:///Users/example/mytask-1.0.2.jar

dataflow:>app register --name task3 --type task --uri http://example.com/mytask-1.0.2.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <type>.<name> and the values are the URIs. For example, this would be
a valid properties file:

task.foo=file:///tmp/foo.jar

task.bar=file:///tmp/bar.jar

Then use the app import command and provide the location of the properties file via --uri:

app import --uri file:///tmp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release

Maven http://bit.ly/Belmont-GA-task-
applications-maven

http://bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
maven

Docker http://bit.ly/Belmont-GA-task-
applications-docker

http://bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dataflow:>app import --uri http://bit.ly/Belmont-GA-task-applications-maven

http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 76

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either app register or app import, if a task app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

26.3 Creating a Task Definition

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the task create command to create the task definition.
For example:

dataflow:>task create mytask --definition "timestamp --format=\"yyyy\""

 Created new task 'mytask'

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the task list command.

26.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the task launch command. For example:

dataflow:>task launch mytask

 Launched task 'mytask'

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dataflow:>task launch mytask --arguments "--server.port=8080,--foo=bar"

Additional properties meant for a TaskLauncher itself can be passed in using a --properties option.
Format of this option is a comma delimited string of properties prefixed with app.<task definition
name>.<property>. Properties are passed to TaskLauncher as application properties and it is up
to an implementation to choose how those are passed into an actual task application. If the property is
prefixed with deployer instead of app it is passed to TaskLauncher as a deployment property and
its meaning may be TaskLauncher implementation specific.

dataflow:>task launch mytask --properties "deployer.timestamp.foo1=bar1,app.timestamp.foo2=bar2"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting
common properties to all the task applications that are launched by it. This can be done by

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 77

adding properties prefixed with spring.cloud.dataflow.applicationProperties.task when
starting the server. When doing so, the server will pass all the properties, without the prefix, to the
instances it launches.

For example, all the launched applications can be configured to use the properties foo and fizz by
launching the Data Flow server with the following options:

--spring.cloud.dataflow.applicationProperties.task.foo=bar

--spring.cloud.dataflow.applicationProperties.task.fizz=bar2

This will cause the properties foo=bar and fizz=bar2 to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than task deployment
properties. They will be overridden if a property with the same key is specified at task launch
time (e.g. app.trigger.fizz will override the common property).

26.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:

• Task Name

• Start Time

• End Time

• Exit Code

• Exit Message

• Last Updated Time

• Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the task execution list command.

To get a list of task executions for just one task definition, add --name and the task definition name, for
example task execution list --name foo. To retrieve full details for a task execution use the
task display command with the id of the task execution, for example task display --id 549.

26.6 Destroying a Task Definition

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the task destroy command.
For example:

dataflow:>task destroy mytask

 Destroyed task 'mytask'

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 78

Note

This will not stop any currently executing tasks for this definition, instead it just removes the
task definition from the database.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 79

27. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spring-cloud-task-stream
and spring-cloud-stream-binder-kafka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: task-events, job-
execution-events etc.,).

dataflow:>task create myTask --definition “myBatchJob"

dataflow:>task launch myTask

dataflow:>stream create task-event-subscriber1 --definition ":task-events > log" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dataflow:>task launch myTask --properties "spring.cloud.stream.bindings.task-

events.destination=myTaskEvents"

dataflow:>stream create task-event-subscriber2 --definition ":myTaskEvents > log" --deploy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 27.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events job-execution-events

Step Execution events step-execution-events

Item Read events item-read-events

Item Process events item-process-events

Item Write events item-write-events

Skip events skip-events

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 80

28. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available task-launcher sinks. Currently
the platforms supported via the task-launcher sinks are local, Cloud Foundry, and Yarn.

Note

task-launcher-local is meant for development purposes only.

A task-launcher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the task-launcher will obtain the URI of the artifact to be
launched as well as the environment properties, command line arguments, deployment properties and
application name to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register command as
follows (for the Rabbit Binder):

app register --name task-launcher-local --type sink --uri maven://

org.springframework.cloud.stream.app:task-launcher-local-sink-rabbit:jar:1.2.0.RELEASE

In the case of a maven based task that is to be launched, the task-launcher

application is responsible for downloading the artifact. You must configure the task-

launcher with the appropriate configuration of Maven Properties such as --maven.remote-
repositories.repo1.url=http://repo.spring.io/libs-milestone" to resolve artifacts,
in this case against a milestone repo. Note that this repo can be different than the one used to register
the task-launcher application itself.

28.1 TriggerTask

One way to launch a task using the task-launcher is to use the triggertask source. The
triggertask source will emit a message with a TaskLaunchRequest object containing the required
launch information. The triggertask can be added to the available sources by executing the app
register command as follows (for the Rabbit Binder):

app register --type source --name triggertask --uri maven://

org.springframework.cloud.stream.app:triggertask-source-rabbit:1.2.0.RELEASE

An example of this would be to launch the timestamp task once every 60 seconds, the stream to
implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.2.0.RELEASE --trigger.fixed-

delay=60 --triggertask.environment-properties=spring.datasource.url=jdbc:h2:tcp://

localhost:19092/mem:dataflow,spring.datasource.username=sa | task-launcher-local --maven.remote-

repositories.repo1.url=http://repo.spring.io/libs-release" --deploy

If you execute runtime apps you can find the log file for the task launcher sink. Tailing that file you
can find the log file for the launched tasks. The setting of triggertask.environment-properties
is so that all the task executions can be collected in the same H2 database used in the local version
of the Data Flow Server. You can then see the list of task executions using the shell command task
execution list

dataflow:>task execution list

###

Task Name #ID# Start Time # End Time #Exit Code#

###

https://github.com/spring-cloud-stream-app-starters/tasklauncher-local
https://github.com/spring-cloud-stream-app-starters/tasklauncher-cloudfoundry
https://github.com/spring-cloud-stream-app-starters/tasklauncher-yarn
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-stream/src/main/java/org/springframework/cloud/task/launcher/TaskLaunchRequest.java
https://github.com/spring-cloud-stream-app-starters/tasklauncher-local/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-sink-task-launcher-local/README.adoc
https://github.com/spring-cloud/spring-cloud-deployer/blob/master/spring-cloud-deployer-resource-maven/src/main/java/org/springframework/cloud/deployer/resource/maven/MavenProperties.java
https://github.com/spring-cloud-stream-app-starters/triggertask/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-source-triggertask/README.adoc

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 81

#timestamp-task_26176#4 #Tue May 02 12:13:49 EDT 2017#Tue May 02 12:13:49 EDT 2017#0 #

#timestamp-task_32996#3 #Tue May 02 12:12:49 EDT 2017#Tue May 02 12:12:49 EDT 2017#0 #

#timestamp-task_58971#2 #Tue May 02 12:11:50 EDT 2017#Tue May 02 12:11:50 EDT 2017#0 #

#timestamp-task_13467#1 #Tue May 02 12:10:50 EDT 2017#Tue May 02 12:10:50 EDT 2017#0 #

###

28.2 TaskLaunchRequest-transform

Another option to start a task using the task-launcher would be to create a stream using the
Tasklaunchrequest-transform processor to translate a message payload to a TaskLaunchRequest.

The tasklaunchrequest-transform can be added to the available processors by executing the
app register command as follows (for the Rabbit Binder):

app register --type processor --name tasklaunchrequest-transform --uri maven://

org.springframework.cloud.stream.app:tasklaunchrequest-transform-processor-rabbit:1.2.0.RELEASE

For example:

stream create task-stream --definition "http --port=9000 | tasklaunchrequest-transform --uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.2.0.RELEASE | task-launcher-local --

maven.remote-repositories.repo1.url=http://repo.spring.io/libs-release"

https://github.com/spring-cloud-stream-app-starters/tasklaunchrequest-transform

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 82

29. Composed Tasks

Spring Cloud Data Flow allows a user to create a directed graph where each node of the graph is a task
application. This is done by using the DSL for composed tasks. A composed task can be created via
the RESTful API, the Spring Cloud Data Flow Shell, or the Spring Cloud Data Flow UI.

29.1 Configuring the Composed Task Runner

Composed tasks are executed via a task application called the Composed Task Runner.

Registering the Composed Task Runner

Out of the box the Composed Task Runner application is not registered with Spring Cloud Data Flow.
So, to launch composed tasks we must first register the Composed Task Runner as an application with
Spring Cloud Data Flow as follows:

app register --name composed-task-runner --type task --uri maven://

org.springframework.cloud.task.app:composedtaskrunner-task:<DESIRED_VERSION>

You can also configure Spring Cloud Data Flow to use a different task
definition name for the composed task runner. This can be done by setting the
spring.cloud.dataflow.task.composedTaskRunnerName property to the name of your choice.
You can then register the composed task runner application with the name you set using that property.

Configuring the Composed Task Runner

The Composed Task Runner application has a dataflow.server.uri property that is used for
validation and for launching child tasks. This defaults to localhost:9393. If you run a distributed
Spring Cloud Data Flow server, like you would do if you deploy the server on Cloud Foundry, YARN
or Kubernetes, then you need to provide the URI that can be used to access the server. You can
either provide this dataflow.server.uri property for the Composed Task Runner application when
launching a composed task, or you can provide a spring.cloud.dataflow.server.uri property
for the Spring Cloud Data Flow server when it is started. For the latter case the dataflow.server.uri
Composed Task Runner application property will be automatically set when a composed task is
launched.

29.2 The Lifecycle of a Composed Task

Creating a Composed Task

The DSL for the composed tasks is used when creating a task definition via the task create command.
For example:

dataflow:> app register --name timestamp --type task --uri maven://

org.springframework.cloud.task.app:timestamp-task:<DESIRED_VERSION>

dataflow:> app register --name mytaskapp --type task --uri file:///home/tasks/mytask.jar

dataflow:> task create my-composed-task --definition "mytaskapp && timestamp"

dataflow:> task launch my-composed-task

In the example above we assume that the applications to be used by our composed task have not been
registered yet. So the first two steps we register two task applications. We then create our composed
task definition by using the task create command. The composed task DSL in the example above will,
when launched, execute mytaskapp and then execute the timestamp application.

https://github.com/spring-cloud-task-app-starters/composed-task-runner
http://localhost:9393

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 83

But before we launch the my-composed-task definition, we can view what Spring Cloud Data Flow
generated for us. This can be done by executing the task list command.

dataflow:>task list

###

Task Name # Task Definition #Task Status#

###

#my-composed-task #mytaskapp && timestamp#unknown #

#my-composed-task-mytaskapp#mytaskapp #unknown #

#my-composed-task-timestamp#timestamp #unknown #

###

Spring Cloud Data Flow created three task definitions, one for each of the applications that comprises our
composed task (my-composed-task-mytaskapp and my-composed-task-timestamp) as well
as the composed task (my-composed-task) definition. We also see that each of the generated names
for the child tasks is comprised of the name of the composed task and the name of the application
separated by a dash -. i.e. my-composed-task - mytaskapp.

Task Application Parameters

The task applications that comprise the composed task definition can also contain parameters. For
example:

dataflow:> task create my-composed-task --definition "mytaskapp --displayMessage=hello && timestamp --

format=YYYY"

Launching a Composed Task

Launching a composed task is done the same way as launching a stand-alone task. i.e.

task launch my-composed-task

Once the task is launched and assuming all the tasks complete successfully you will see three task
executions when executing a task execution list. For example:

dataflow:>task execution list

##

Task Name #ID # Start Time # End Time #Exit Code#

##

#my-composed-task-timestamp#713#Wed Apr 12 16:43:07 EDT 2017#Wed Apr 12 16:43:07 EDT 2017#0 #

#my-composed-task-mytaskapp#712#Wed Apr 12 16:42:57 EDT 2017#Wed Apr 12 16:42:57 EDT 2017#0 #

#my-composed-task #711#Wed Apr 12 16:42:55 EDT 2017#Wed Apr 12 16:43:15 EDT 2017#0 #

##

In the example above we see that my-compose-task launched and it also launched the other tasks in
sequential order and all of them executed successfully with "Exit Code" as 0.

Exit Statuses

The following list shows how the Exit Status will be set for each step (task) contained in the composed
task following each step execution.

• If the TaskExecution has an ExitMessage that will be used as the ExitStatus

• If no ExitMessage is present and the ExitCode is set to zero then the ExitStatus for the step
will be COMPLETED.

• If no ExitMessage is present and the ExitCode is set to any non zero number then the
ExitStatus for the step will be FAILED.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 84

Destroying a Composed Task

The same command used to destroy a stand-alone task is the same as destroying a composed task.
The only difference is that destroying a composed task will also destroy the child tasks associated with
it. For example

dataflow:>task list

###

Task Name # Task Definition #Task Status#

###

#my-composed-task #mytaskapp && timestamp#COMPLETED #

#my-composed-task-mytaskapp#mytaskapp #COMPLETED #

#my-composed-task-timestamp#timestamp #COMPLETED #

###

...

dataflow:>task destroy my-composed-task

dataflow:>task list

#######################################

#Task Name#Task Definition#Task Status#

#######################################

Stopping a Composed Task

In cases where a composed task execution needs to be stopped. This can be done via the:

• RESTful API

• Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the stop button by
the job execution that needs to be stopped.

The composed task run will be stopped when the currently running child task completes. The step
associated with the child task that was running at the time that the composed task was stopped will be
marked as STOPPED as well as the composed task job execution.

Restarting a Composed Task

In cases where a composed task fails during execution and the status of the composed task is FAILED
then the task can be restarted. This can be done via the:

• RESTful API

• Shell by launching the task using the same parameters

• Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the restart button by
the job execution that needs to be restarted.

Note

Restarting a Composed Task job that has been stopped (via the Spring Cloud Data Flow
Dashboard or RESTful API), will relaunch the STOPPED child task, and then launch the
remaining (unlaunched) child tasks in the specified order.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 85

30. Composed Tasks DSL

30.1 Conditional Execution

Conditional execution is expressed using a double ampersand symbol &&. This allows each task in the
sequence to be launched only if the previous task successfully completed. For example:

task create my-composed-task --definition "foo && bar"

When the composed task my-composed-task is launched, it will launch the task foo and if it completes
successfully, then the task bar will be launched. If the foo task fails, then the task bar will not launch.

You can also use the Spring Cloud Data Flow Dashboard to create your conditional execution. By using
the designer to drag and drop applications that are required, and connecting them together to create
your directed graph. For example:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 86

Figure 30.1. Conditional Execution

The diagram above is a screen capture of the directed graph as it being created using the Spring
Cloud Data Flow Dashboard. We see that are 4 components in the diagram that comprise a conditional
execution:

• Start icon - All directed graphs start from this symbol. There will only be one.

• Task icon - Represents each task in the directed graph.

• End icon - Represents the termination of a directed graph.

• Solid line arrow - Represents the flow conditional execution flow between:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 87

• Two applications

• The start control node and an application

• An application and the end control node

Note

You can view a diagram of your directed graph by clicking the detail button next to the composed
task definition on the definitions tab.

30.2 Transitional Execution

The DSL supports fine grained control over the transitions taken during the execution of the directed
graph. Transitions are specified by providing a condition for equality based on the exit status of the
previous task. A task transition is represented by the following symbol ->.

Basic Transition

A basic transition would look like the following:

task create my-transition-composed-task --definition "foo 'FAILED' -> bar 'COMPLETED' -> baz"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. If the exit status of foo was COMPLETED then baz would launch. All other statuses returned by
foo will have no effect and task would terminate normally.

Using the Spring Cloud Data Flow Dashboard to create the same "basic transition" would look like:

Figure 30.2. Basic Transition

The diagram above is a screen capture of the directed graph as it being created using the Spring Cloud
Data Flow Dashboard. Notice that there are 2 different types of connectors:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 88

• Dashed line - Is the line used to represent transitions from the application to one of the possible
destination applications.

• Solid line - Used to connect applications in a conditional execution or a connection between the
application and a control node (end, start).

When creating a transition, link the application to each of possible destination using the connector. Once
complete go to each connection and select it by clicking it. A bolt icon should appear, click that icon and
enter the exit status required for that connector. The solid line for that connector will turn to a dashed line.

Transition With a Wildcard

Wildcards are supported for transitions by the DSL for example:

task create my-transition-composed-task --definition "foo 'FAILED' -> bar '*' -> baz"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. Any exit status of foo other than FAILED then baz would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with wildcard" would look
like:

Figure 30.3. Basic Transition With Wildcard

Transition With a Following Conditional Execution

A transition can be followed by a conditional execution so long as the wildcard is not used. For example:

task create my-transition-conditional-execution-task --definition "foo 'FAILED' -> bar 'UNKNOWN' -> baz

 && qux && quux"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. If foo had an exit status of UNKNOWN then baz would launch. Any exit status of foo other than
FAILED or UNKNOWN then qux would launch and upon successful completion quux would launch.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 89

Using the Spring Cloud Data Flow Dashboard to create the same "transition with conditional execution"
would look like:

Figure 30.4. Transition With Conditional Execution

Note

In this diagram we see the dashed line (transition) connecting the foo application to the target
applications, but a solid line connecting the conditional executions between foo, qux, and
quux.

30.3 Split Execution

Splits allow for multiple tasks within a composed task to be run in parallel. It is denoted by using angle
brackets <> to group tasks and flows that are to be run in parallel. These tasks and flows are separated
by the double pipe || . For example:

task create my-split-task --definition "<foo || bar || baz>"

The example above will launch tasks foo, bar and baz in parallel.

Using the Spring Cloud Data Flow Dashboard to create the same "split execution" would look like:

Figure 30.5. Split

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 90

With the task DSL a user may also execute multiple split groups in succession. For example:

task create my-split-task --definition "<foo || bar || baz> && <qux || quux>"

In the example above tasks foo, bar and baz will be launched in parallel, once they all complete then
tasks qux, quux will be launched in parallel. Once they complete the composed task will end. However
if foo, bar, or baz fails then, the split containing qux and quux will not launch.

Using the Spring Cloud Data Flow Dashboard to create the same "split with multiple groups" would
look like:

Figure 30.6. Split as a part of a conditional execution

Notice that there is a SYNC control node that is by the designer when connecting two consecutive splits.

Split Containing Conditional Execution

A split can also have a conditional execution within the angle brackets. For example:

task create my-split-task --definition "<foo && bar || baz>"

In the example above we see that foo and baz will be launched in parallel, however bar will not launch
until foo completes successfully.

Using the Spring Cloud Data Flow Dashboard to create the same "split containing conditional execution"
would look like:

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 91

Figure 30.7. Split with conditional execution

Part VIII. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 93

31. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Data Flow cluster view with the list of all running applications

• Streams List, create, deploy, and destroy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<host>:<port>/dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at https://localhost:9393/dashboard. If you
have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.

Note

The default Dashboard server port is 9393

Figure 31.1. The Spring Cloud Data Flow Dashboard

http://localhost:9393/dashboard

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 94

32. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Figure 32.1. List of Available Applications

32.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>.<name> = <coordinates>

For example:

task.timestamp=maven://org.springframework.cloud.task.app:timestamp-

task:1.2.0.RELEASE

processor.transform=maven://org.springframework.cloud.stream.app:transform-

processor-rabbit:1.2.0.RELEASE

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 95

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Figure 32.2. Bulk Import Applications

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 96

33. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Figure 33.1. List of Running Applications

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 97

34. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Figure 34.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 98

Figure 34.2. Stream Details Page

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 99

35. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

• Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

• Write pipelines via DSL with content-assist and auto-complete

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Figure 35.1. Flo for Spring Cloud Data Flow

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 100

36. Tasks
The Tasks section of the Dashboard currently has three tabs:

• Apps

• Definitions

• Executions

36.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note

You will also use this tab to create Batch Jobs.

Figure 36.1. List of Task Apps

On this screen you can perform the following actions:

• View details such as the task app options.

• Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note

Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 101

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

36.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Figure 36.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Figure 36.3. Bulk Define Tasks

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 102

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-name> = <task-application> <options>

For example:

demo-timestamp = timestamp --format=hhmmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the UI will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Note

Bulk loading of composed task definitions is not currently supported.

Creating Composed Task Definitions

The dashboard includes the Create Composed Task tab that provides the canvas application, offering
a interactive graphical interface for creating composed tasks.

In this tab, you can:

• Create and visualize composed tasks using DSL, a graphical canvas, or both

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of the composed task

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 103

Figure 36.4. Composed Task Designer

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 104

36.3 Executions

Figure 36.5. List of Task Executions

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 105

37. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 37.1. List of Job Executions

37.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 106

Job execution details

Figure 37.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 107

Figure 37.3. Step Execution History

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 108

38. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

• Aggregate Counters

For example, if you create a stream with a Counter application, you can now easily create the
corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter

Part IX. REST API Guide
In this section you will learn all about the Spring Cloud Data Flow REST API.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 110

39. Overview

Spring Cloud Data Flow provides a REST API allowing you to access all aspects of the server. In fact
the Spring Cloud Data Flow Shell is a first-class consumer of that API.

Tip

If you plan on using the REST API using Java, please also consider using the provided Java
client (DataflowTemplate) that uses the REST API internally.

39.1 HTTP verbs

Spring Cloud Data Flow tries to adhere as closely as possible to standard HTTP and REST conventions
in its use of HTTP verbs.

Verb Usage

GET Used to retrieve a resource

POST Used to create a new resource

PUT Used to update an existing resource, including
partial updates. Also used for resources that
imply the concept of restarts such as Tasks.

DELETE Used to delete an existing resource

39.2 HTTP status codes

RESTful note tries to adhere as closely as possible to standard HTTP and REST conventions in its use
of HTTP status codes.

Status code Usage

200 OK The request completed successfully

201 Created A new resource has been created successfully.
The resource’s URI is available from the
response’s Location header

204 No Content An update to an existing resource has been
applied successfully

400 Bad Request The request was malformed. The response body
will include an error providing further information

404 Not Found The requested resource did not exist

409 Conflict The requested resource already exists, e.g. the
task already exists or the stream was already
being deployed

422 Unprocessable Entity Returned in cases the Job Execution cannot be
stopped or restarted

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 111

39.3 Headers

Every response has the following header(s):

Name Description

Content-Type The Content-Type of the payload, e.g.
application/hal+json

39.4 Errors

Path Type Description

error String The HTTP error that occurred,
e.g. Bad Request

message String A description of the cause of
the error

path String The path to which the request
was made

status Number The HTTP status code, e.g.
400

timestamp String The time, in milliseconds, at
which the error occurred

39.5 Hypermedia

Spring Cloud Data Flow uses hypermedia and resources include links to other resources in their
responses. Responses are in Hypertext Application from resource to resource Language (HAL) format.
Links can be found beneath the _links key. Users of the API should not create URIs themselves,
instead they should use the above-described links to navigate.

http://stateless.co/hal_specification.html

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 112

40. Resources

40.1 Index

The index provides the entry point into Spring Cloud Data Flow’s REST API.

Accessing the index

A GET request is used to access the index

Request structure

GET / HTTP/1.1

Host: localhost:9393

Example request

$ curl 'http://localhost:9393/' -i

Response structure

Path Type Description

_links Object Links to other resources

['api.revision'] Number Incremented each time a
change is implemented in this
REST API

Example response

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 4030

{

 "_links" : {

 "dashboard" : {

 "href" : "http://localhost:9393/dashboard"

 },

 "streams/definitions" : {

 "href" : "http://localhost:9393/streams/definitions"

 },

 "streams/definitions/definition" : {

 "href" : "http://localhost:9393/streams/definitions/{name}",

 "templated" : true

 },

 "streams/deployments" : {

 "href" : "http://localhost:9393/streams/deployments"

 },

 "streams/deployments/deployment" : {

 "href" : "http://localhost:9393/streams/deployments/{name}",

 "templated" : true

 },

 "runtime/apps" : {

 "href" : "http://localhost:9393/runtime/apps"

 },

 "runtime/apps/app" : {

 "href" : "http://localhost:9393/runtime/apps/{appId}",

 "templated" : true

 },

 "runtime/apps/instances" : {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 113

 "href" : "http://localhost:9393/runtime/apps/interface

%20org.springframework.web.util.UriComponents%24UriTemplateVariables/instances"

 },

 "metrics/streams" : {

 "href" : "http://localhost:9393/metrics/streams"

 },

 "tasks/definitions" : {

 "href" : "http://localhost:9393/tasks/definitions"

 },

 "tasks/definitions/definition" : {

 "href" : "http://localhost:9393/tasks/definitions/{name}",

 "templated" : true

 },

 "tasks/executions" : {

 "href" : "http://localhost:9393/tasks/executions"

 },

 "tasks/executions/name" : {

 "href" : "http://localhost:9393/tasks/executions{?name}",

 "templated" : true

 },

 "tasks/executions/execution" : {

 "href" : "http://localhost:9393/tasks/executions/{id}",

 "templated" : true

 },

 "jobs/executions" : {

 "href" : "http://localhost:9393/jobs/executions"

 },

 "jobs/executions/name" : {

 "href" : "http://localhost:9393/jobs/executions{?name}",

 "templated" : true

 },

 "jobs/executions/execution" : {

 "href" : "http://localhost:9393/jobs/executions/{id}",

 "templated" : true

 },

 "jobs/executions/execution/steps" : {

 "href" : "http://localhost:9393/jobs/executions/{jobExecutionId}/steps",

 "templated" : true

 },

 "jobs/executions/execution/steps/step" : {

 "href" : "http://localhost:9393/jobs/executions/{jobExecutionId}/steps/{stepId}",

 "templated" : true

 },

 "jobs/executions/execution/steps/step/progress" : {

 "href" : "http://localhost:9393/jobs/executions/{jobExecutionId}/steps/{stepId}/progress",

 "templated" : true

 },

 "jobs/instances/name" : {

 "href" : "http://localhost:9393/jobs/instances{?name}",

 "templated" : true

 },

 "jobs/instances/instance" : {

 "href" : "http://localhost:9393/jobs/instances/{id}",

 "templated" : true

 },

 "tools/parseTaskTextToGraph" : {

 "href" : "http://localhost:9393/tools"

 },

 "tools/convertTaskGraphToText" : {

 "href" : "http://localhost:9393/tools"

 },

 "counters" : {

 "href" : "http://localhost:9393/metrics/counters"

 },

 "counters/counter" : {

 "href" : "http://localhost:9393/metrics/counters/{name}",

 "templated" : true

 },

 "field-value-counters" : {

 "href" : "http://localhost:9393/metrics/field-value-counters"

 },

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 114

 "field-value-counters/counter" : {

 "href" : "http://localhost:9393/metrics/field-value-counters/{name}",

 "templated" : true

 },

 "aggregate-counters" : {

 "href" : "http://localhost:9393/metrics/aggregate-counters"

 },

 "aggregate-counters/counter" : {

 "href" : "http://localhost:9393/metrics/aggregate-counters/{name}",

 "templated" : true

 },

 "apps" : {

 "href" : "http://localhost:9393/apps"

 },

 "about" : {

 "href" : "http://localhost:9393/about"

 },

 "completions/stream" : {

 "href" : "http://localhost:9393/completions/stream{?start,detailLevel}",

 "templated" : true

 },

 "completions/task" : {

 "href" : "http://localhost:9393/completions/task{?start,detailLevel}",

 "templated" : true

 }

 },

 "api.revision" : 14

}

Links

The main element of the index are the links as they allow you to traverse the API and execute the
desired functionality:

Relation Description

about Access meta information, including enabled
features, security info, version information

dashboard Access the dashboard UI

apps Handle registered applications

completions/stream Exposes the DSL completion features for Stream

completions/task Exposes the DSL completion features for Task

metrics/streams Exposes metrics for the stream applications

jobs/executions Provides the JobExecution resource

jobs/executions/execution Provides details for a specific JobExecution

jobs/executions/execution/steps Provides the steps for a JobExecution

jobs/executions/execution/steps/step Returns the details for a specific step

jobs/executions/execution/steps/

step/progress

Provides progress information for a specific step

jobs/executions/name Retrieve Job Executions by Job name

jobs/instances/instance Provides the job instance resource for a specific
job instance

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 115

Relation Description

jobs/instances/name Provides the Job instance resource for a specific
job name

runtime/apps Provides the runtime application resource

runtime/apps/app Exposes the runtime status for a specific app

runtime/apps/instances Provides the status for app instances

tasks/definitions Provides the task definition resource

tasks/definitions/definition Provides details for a specific task definition

tasks/executions Returns Task executions and allows lanching of
tasks

tasks/executions/name Returns all task executions for a given Task
name

tasks/executions/execution Provides details for a specific task execution

streams/definitions Exposes the Streams resource

streams/definitions/definition Handle a specific Stream definition

streams/deployments Provides Stream deployment operations

streams/deployments/deployment Request (un-)deployment of an existing stream
definition

counters Exposes the resource for dealing with Counters

counters/counter Handle a specific counter

aggregate-counters Provides the resource for dealing with aggregate
counters

aggregate-counters/counter Handle a specific aggregate counter

field-value-counters Provides the resource for dealing with field-
value-counters

field-value-counters/counter Handle a specific field-value-counter

tools/parseTaskTextToGraph Parse a task definition into a graph structure

tools/convertTaskGraphToText Convert a graph format into DSL text format

40.2 Server Meta Information

Retrieving information about the server

A GET request will return meta information for Spring Cloud Data Flow. This includes:

• Runtime Environment Information

• Information regarding which features are enabled

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 116

• Dependency information of Spring Cloud Data Flow Server

• Security information

Request structure

GET /about HTTP/1.1

Accept: application/json

Host: localhost:9393

Example request

$ curl 'http://localhost:9393/about' -i -H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 1837

{

 "featureInfo" : {

 "analyticsEnabled" : true,

 "streamsEnabled" : true,

 "tasksEnabled" : true

 },

 "versionInfo" : {

 "implementation" : {

 "name" : "spring-cloud-starter-dataflow-server-local",

 "version" : "1.2.4.BUILD-SNAPSHOT"

 },

 "core" : {

 "name" : "Spring Cloud Data Flow Core",

 "version" : "1.2.4.BUILD-SNAPSHOT"

 },

 "dashboard" : {

 "name" : "Spring Cloud Dataflow UI",

 "version" : "1.2.1.RELEASE"

 }

 },

 "securityInfo" : {

 "authenticationEnabled" : false,

 "authorizationEnabled" : false,

 "formLogin" : false,

 "authenticated" : false,

 "username" : null,

 "roles" : []

 },

 "runtimeEnvironment" : {

 "appDeployer" : {

 "deployerImplementationVersion" : "1.2.2.RELEASE",

 "deployerName" : "LocalAppDeployer",

 "deployerSpiVersion" : "1.2.2.RELEASE",

 "javaVersion" : "1.8.0_121",

 "platformApiVersion" : "Linux 4.4.0-87-generic",

 "platformClientVersion" : "4.4.0-87-generic",

 "platformHostVersion" : "4.4.0-87-generic",

 "platformSpecificInfo" : { },

 "platformType" : "Local",

 "springBootVersion" : "1.5.4.RELEASE",

 "springVersion" : "4.3.9.RELEASE"

 },

 "taskLauncher" : {

 "deployerImplementationVersion" : "1.2.2.RELEASE",

 "deployerName" : "LocalTaskLauncher",

 "deployerSpiVersion" : "1.2.2.RELEASE",

 "javaVersion" : "1.8.0_121",

 "platformApiVersion" : "Linux 4.4.0-87-generic",

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 117

 "platformClientVersion" : "4.4.0-87-generic",

 "platformHostVersion" : "4.4.0-87-generic",

 "platformSpecificInfo" : { },

 "platformType" : "Local",

 "springBootVersion" : "1.5.4.RELEASE",

 "springVersion" : "4.3.9.RELEASE"

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/about"

 }

 }

}

40.3 Registered Applications

Listing Applications

A GET request will list all applications known to Spring Cloud Data Flow.

Request structure

GET /apps?type=source HTTP/1.1

Accept: application/json

Host: localhost:9393

Request parameters

Parameter Description

type Restrict the returned apps to the type of the app.
One of [source, processor, sink, task]

Example request

$ curl 'http://localhost:9393/apps?type=source' -i -H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 799

{

 "_embedded" : {

 "appRegistrationResourceList" : [{

 "name" : "http",

 "type" : "source",

 "uri" : "maven://org.springframework.cloud.stream.app:http-source-rabbit:1.1.0.RELEASE",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/apps/source/http"

 }

 }

 }, {

 "name" : "time",

 "type" : "source",

 "uri" : "maven://org.springframework.cloud.stream.app:time-source-rabbit:1.1.0.RELEASE",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/apps/source/time"

 }

 }

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 118

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/apps?page=0&size=20"

 }

 },

 "page" : {

 "size" : 20,

 "totalElements" : 2,

 "totalPages" : 1,

 "number" : 0

 }

}

Getting Information on a partical Application

A GET request on /apps/<type>/<name> will get info on a particular application.

Request structure

GET /apps/source/http HTTP/1.1

Accept: application/json

Host: localhost:9393

Path parameters

Table 40.1. /apps/{type}/{name}

Parameter Description

type The type of application to query. One of [source,
processor, sink, task]

name The name of the application to query

Example request

$ curl 'http://localhost:9393/apps/source/http' -i -H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 1232

{

 "name" : "http",

 "type" : "source",

 "uri" : "maven://org.springframework.cloud.stream.app:http-source-rabbit:1.1.0.RELEASE",

 "options" : [{

 "id" : "http.path-pattern",

 "name" : "http.path-pattern",

 "type" : "java.lang.String",

 "description" : "An Ant-Style pattern to determine which http requests will be captured.",

 "shortDescription" : "An Ant-Style pattern to determine which http requests will be captured.",

 "defaultValue" : "/",

 "hints" : {

 "keyHints" : [],

 "keyProviders" : [],

 "valueHints" : [],

 "valueProviders" : []

 },

 "deprecation" : null,

 "sourceType" : null,

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 119

 "sourceMethod" : null,

 "deprecated" : false

 }, {

 "id" : "server.port",

 "name" : "port",

 "type" : "java.lang.Integer",

 "description" : "Server HTTP port.",

 "shortDescription" : "Server HTTP port.",

 "defaultValue" : null,

 "hints" : {

 "keyHints" : [],

 "keyProviders" : [],

 "valueHints" : [],

 "valueProviders" : []

 },

 "deprecation" : null,

 "sourceType" : "org.springframework.boot.autoconfigure.web.ServerProperties",

 "sourceMethod" : null,

 "deprecated" : false

 }],

 "shortDescription" : null

}

Registering a New Application

A POST request on /apps/<type>/<name> will allow registration of a new application.

Request structure

POST /apps/source/http HTTP/1.1

Host: localhost:9393

Content-Type: application/x-www-form-urlencoded

uri=maven%3A%2F%2Forg.springframework.cloud.stream.app%3Ahttp-source-rabbit%3A1.1.0.RELEASE

Request parameters

Parameter Description

uri URI where the application bits reside

metadata-uri URI where the application metadata jar can be
found

force Must be true if a registration with the same name
and type already exists, otherwise an error will
occur

Path parameters

Table 40.2. /apps/{type}/{name}

Parameter Description

type The type of application to register. One of
[source, processor, sink, task]

name The name of the application to register

Example request

$ curl 'http://localhost:9393/apps/source/http' -i -X POST -d 'uri=maven%3A%2F

%2Forg.springframework.cloud.stream.app%3Ahttp-source-rabbit%3A1.1.0.RELEASE'

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 120

Response structure

HTTP/1.1 201 Created

Unregistering an Application

A DELETE request on /apps/<type>/<name> will unregister a previously registered application.

Request structure

DELETE /apps/source/http HTTP/1.1

Host: localhost:9393

Path parameters

Table 40.3. /apps/{type}/{name}

Parameter Description

type The type of application to unregister. One of
[source, processor, sink, task]

name The name of the application to unregister

Example request

$ curl 'http://localhost:9393/apps/source/http' -i -X DELETE

Response structure

HTTP/1.1 200 OK

Registering Applications in Bulk

A POST request on /apps allows registering multiple applications at once.

Request structure

POST /apps HTTP/1.1

Host: localhost:9393

Content-Type: application/x-www-form-urlencoded

apps=source.http%3Dmaven%3A%2F%2Forg.springframework.cloud.stream.app%3Ahttp-source-rabbit

%3A1.1.0.RELEASE&force=false

Request parameters

Parameter Description

uri URI where a properties file containing
registrations can be fetched. Exclusive with
apps.

apps Inline set of registrations. Exclusive with uri.

force Must be true if a registration with the same name
and type already exists, otherwise an error will
occur

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 121

Example request

$ curl 'http://localhost:9393/apps' -i -X POST -d 'apps=source.http%3Dmaven%3A%2F

%2Forg.springframework.cloud.stream.app%3Ahttp-source-rabbit%3A1.1.0.RELEASE&force=false'

Response structure

HTTP/1.1 201 Created

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 531

{

 "_embedded" : {

 "appRegistrationResourceList" : [{

 "name" : "http",

 "type" : "source",

 "uri" : "maven://org.springframework.cloud.stream.app:http-source-rabbit:1.1.0.RELEASE",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/apps/source/http"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/apps?page=0&size=20"

 }

 },

 "page" : {

 "size" : 20,

 "totalElements" : 1,

 "totalPages" : 1,

 "number" : 0

 }

}

40.4 Stream Definitions

Creating a new Stream Definition

Creating a stream definition is achieved by POSTing to the stream definitions endpoint. A simple curl
request for a ticktock stream may look like:

curl -X POST -d "name=ticktock&definition=time | log" localhost:9393/streams/definitions?deploy=false

A stream definition you create may also contain additional parameters. For instance, in the following
example we also provide the date-time format.

Request structure

POST /streams/definitions HTTP/1.1

Host: localhost:9393

Content-Type: application/x-www-form-urlencoded

name=timelog&definition=time+--format%3D%27YYYY+MM+DD%27+%7C+log&deploy=false

Request parameters

Parameter Description

name The name for the created task definitions

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 122

Parameter Description

definition The definition for the stream, using Data Flow
DSL

deploy If true, the stream is deployed upon creation
(default is false

Example request

$ curl 'http://localhost:9393/streams/definitions' -i -X POST -d 'name=timelog&definition=time+--format

%3D%27YYYY+MM+DD%27+%7C+log&deploy=false'

Response structure

HTTP/1.1 201 Created

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 307

{

 "name" : "timelog",

 "dslText" : "time --format='YYYY MM DD' | log",

 "status" : "undeployed",

 "statusDescription" : "The app or group is known to the system, but is not currently deployed",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/streams/definitions/timelog"

 }

 }

}

List all Stream Definitions

Request structure

GET /streams/definitions?page=0&size=10 HTTP/1.1

Host: localhost:9393

Request parameters

Parameter Description

page The zero-based page number (optional)

size The requested page size (optional)

Example request

$ curl 'http://localhost:9393/streams/definitions?page=0&size=10' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 628

{

 "_embedded" : {

 "streamDefinitionResourceList" : [{

 "name" : "timelog",

 "dslText" : "time --format='YYYY MM DD' | log",

 "status" : "undeployed",

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 123

 "statusDescription" : "The app or group is known to the system, but is not currently deployed",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/streams/definitions/timelog"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/streams/definitions?page=0&size=10"

 }

 },

 "page" : {

 "size" : 10,

 "totalElements" : 1,

 "totalPages" : 1,

 "number" : 0

 }

}

List related Stream Definitions

Request structure

GET /streams/definitions/timelog/related?nested=true HTTP/1.1

Host: localhost:9393

Request parameters

Parameter Description

nested Should we recursively search for related stream
definitions (optional)

Example request

$ curl 'http://localhost:9393/streams/definitions/timelog/related?nested=true' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 644

{

 "_embedded" : {

 "streamDefinitionResourceList" : [{

 "name" : "timelog",

 "dslText" : "time --format='YYYY MM DD' | log",

 "status" : "undeployed",

 "statusDescription" : "The app or group is known to the system, but is not currently deployed",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/streams/definitions/timelog"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/streams/definitions/timelog/related?page=0&size=20"

 }

 },

 "page" : {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 124

 "size" : 20,

 "totalElements" : 1,

 "totalPages" : 1,

 "number" : 0

 }

}

Delete a single Stream Definition

Request structure

DELETE /streams/definitions/timelog HTTP/1.1

Host: localhost:9393

Request parameters

There are no request parameter for this endpoint.

Example request

$ curl 'http://localhost:9393/streams/definitions/timelog' -i -X DELETE

Response structure

HTTP/1.1 200 OK

Delete all Stream Definitions

Request structure

DELETE /streams/definitions HTTP/1.1

Host: localhost:9393

Request parameters

There are no request parameter for this endpoint.

Example request

$ curl 'http://localhost:9393/streams/definitions' -i -X DELETE

Response structure

HTTP/1.1 200 OK

40.5 Stream Deployments

Example "stream deploy" request for a ticktock stream

curl -X POST http://localhost:9393/streams/deployments/ticktock

40.6 Task Definitions

Creating a new Task Definition

Creating a task definition is achieved by POSTing to the task definitions endpoint.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 125

Request structure

POST /tasks/definitions HTTP/1.1

Host: localhost:9393

Content-Type: application/x-www-form-urlencoded

name=my-task&definition=timestamp+--format%3D%27YYYY+MM+DD%27

Request parameters

Parameter Description

name The name for the created task definition

definition The definition for the task, using Data Flow DSL

Example request

$ curl 'http://localhost:9393/tasks/definitions' -i -X POST -d 'name=my-task&definition=timestamp+--

format%3D%27YYYY+MM+DD%27'

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 225

{

 "name" : "my-task",

 "dslText" : "timestamp --format='YYYY MM DD'",

 "composed" : false,

 "status" : "unknown",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/definitions/my-task"

 }

 }

}

List all Task Definitions

Request structure

GET /tasks/definitions?page=0&size=10 HTTP/1.1

Host: localhost:9393

Request parameters

Parameter Description

page The zero-based page number (optional)

size The requested page size (optional)

Example request

$ curl 'http://localhost:9393/tasks/definitions?page=0&size=10' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 126

Content-Length: 542

{

 "_embedded" : {

 "taskDefinitionResourceList" : [{

 "name" : "my-task",

 "dslText" : "timestamp --format='YYYY MM DD'",

 "composed" : false,

 "status" : "unknown",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/definitions/my-task"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/definitions?page=0&size=10"

 }

 },

 "page" : {

 "size" : 10,

 "totalElements" : 1,

 "totalPages" : 1,

 "number" : 0

 }

}

Retrieve Task Definition Detail

Request structure

GET /tasks/definitions/my-task HTTP/1.1

Host: localhost:9393

Table 40.4. /tasks/definitions/{my-task}

Parameter Description

my-task The name of an existing task definition (required)

Request parameters

There are no request parameter for this endpoint.

Example request

$ curl 'http://localhost:9393/tasks/definitions/my-task' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 225

{

 "name" : "my-task",

 "dslText" : "timestamp --format='YYYY MM DD'",

 "composed" : false,

 "status" : "unknown",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/definitions/my-task"

 }

 }

}

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 127

Delete Task Definition

Request structure

DELETE /tasks/definitions/my-task HTTP/1.1

Host: localhost:9393

Table 40.5. /tasks/definitions/{my-task}

Parameter Description

my-task The name of an existing task definition (required)

Request parameters

There are no request parameter for this endpoint.

Example request

$ curl 'http://localhost:9393/tasks/definitions/my-task' -i -X DELETE

Response structure

HTTP/1.1 200 OK

40.7 Task Executions

Launching a Task

Launching a task is done by requesting the creation of a new Task Execution.

Request structure

POST /tasks/executions HTTP/1.1

Host: localhost:9393

Content-Type: application/x-www-form-urlencoded

name=taskA&properties=app.my-task.foo%3Dbar%2Cdeployer.my-task.something-else%3D3&arguments=--

server.port%3D8080%2C--foo%3Dbar

Request parameters

Parameter Description

name The name of the task definition to launch

properties Application and Deployer properties to use while
launching

arguments Command line arguments to pass to the task

Example request

$ curl 'http://localhost:9393/tasks/executions' -i -X POST -d 'name=taskA&properties=app.my-task.foo

%3Dbar%2Cdeployer.my-task.something-else%3D3&arguments=--server.port%3D8080%2C--foo%3Dbar'

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 128

Response structure

HTTP/1.1 201 Created

Content-Type: application/json;charset=UTF-8

Content-Length: 1

1

List All Task Executions

Request structure

GET /tasks/executions?page=0&size=10 HTTP/1.1

Host: localhost:9393

Request parameters

Parameter Description

page The zero-based page number (optional)

size The requested page size (optional)

Example request

$ curl 'http://localhost:9393/tasks/executions?page=0&size=10' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 1155

{

 "_embedded" : {

 "taskExecutionResourceList" : [{

 "executionId" : 2,

 "exitCode" : 0,

 "taskName" : "taskB",

 "startTime" : null,

 "endTime" : null,

 "exitMessage" : null,

 "arguments" : [],

 "jobExecutionIds" : [],

 "errorMessage" : null,

 "externalExecutionId" : "taskB-9f0f4714-f6fa-4606-80fb-19cac6622e3f",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/executions/2"

 }

 }

 }, {

 "executionId" : 1,

 "exitCode" : 0,

 "taskName" : "taskA",

 "startTime" : null,

 "endTime" : null,

 "exitMessage" : null,

 "arguments" : [],

 "jobExecutionIds" : [],

 "errorMessage" : null,

 "externalExecutionId" : "taskA-5f50178a-fc4e-43bf-bda8-9503efb481d3",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/executions/1"

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 129

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/executions?page=0&size=10"

 }

 },

 "page" : {

 "size" : 10,

 "totalElements" : 2,

 "totalPages" : 1,

 "number" : 0

 }

}

List All Task Executions With a Specified Task Name

Request structure

GET /tasks/executions?name=taskB&page=0&size=10 HTTP/1.1

Host: localhost:9393

Request parameters

Parameter Description

page The zero-based page number (optional)

size The requested page size (optional)

name The name associated with the task execution

Example request

$ curl 'http://localhost:9393/tasks/executions?name=taskB&page=0&size=10' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 714

{

 "_embedded" : {

 "taskExecutionResourceList" : [{

 "executionId" : 2,

 "exitCode" : 0,

 "taskName" : "taskB",

 "startTime" : null,

 "endTime" : null,

 "exitMessage" : null,

 "arguments" : [],

 "jobExecutionIds" : [],

 "errorMessage" : null,

 "externalExecutionId" : "taskB-9f0f4714-f6fa-4606-80fb-19cac6622e3f",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/executions/2"

 }

 }

 }]

 },

 "_links" : {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 130

 "self" : {

 "href" : "http://localhost:9393/tasks/executions?page=0&size=10"

 }

 },

 "page" : {

 "size" : 10,

 "totalElements" : 1,

 "totalPages" : 1,

 "number" : 0

 }

}

Task Execution Detail

Request structure

GET /tasks/executions/1 HTTP/1.1

Host: localhost:9393

Table 40.6. /tasks/executions/{id}

Parameter Description

id The id of an existing task execution (required)

Request parameters

There are no request parameter for this endpoint.

Example request

$ curl 'http://localhost:9393/tasks/executions/1' -i

Response structure

HTTP/1.1 200 OK

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 375

{

 "executionId" : 1,

 "exitCode" : 0,

 "taskName" : "taskA",

 "startTime" : null,

 "endTime" : null,

 "exitMessage" : null,

 "arguments" : [],

 "jobExecutionIds" : [],

 "errorMessage" : null,

 "externalExecutionId" : "taskA-5f50178a-fc4e-43bf-bda8-9503efb481d3",

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/tasks/executions/1"

 }

 }

}

Delete Task Execution

Request structure

DELETE /tasks/executions/1 HTTP/1.1

Host: localhost:9393

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 131

Table 40.7. /tasks/executions/{id}

Parameter Description

id The id of an existing task execution (required)

Request parameters

There are no request parameter for this endpoint.

Example request

$ curl 'http://localhost:9393/tasks/executions/1' -i -X DELETE

Response structure

HTTP/1.1 200 OK

40.8 Runtime Information about Applications

It is possible to get information about running apps known to the system, either globally or individually.

Listing All Applications at Runtime

To retrieve information about all instances of all apps, query the /runtime/apps endpoint using GET.

Request structure

GET /runtime/apps HTTP/1.1

Accept: application/json

Host: localhost:9393

Example request

$ curl 'http://localhost:9393/runtime/apps' -i -H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 2553

{

 "_embedded" : {

 "appStatusResourceList" : [{

 "deploymentId" : "mystream.http",

 "state" : "deploying",

 "instances" : {

 "_embedded" : {

 "appInstanceStatusResourceList" : [{

 "instanceId" : "mystream.http-0",

 "state" : "deploying",

 "attributes" : {

 "guid" : "61350",

 "pid" : "4460",

 "port" : "61350",

 "stderr" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http/stderr_0.log",

 "stdout" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http/stdout_0.log",

 "url" : "http://10.194.6.12:61350",

 "working.dir" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http"

 },

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 132

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.http/instances/mystream.http-0"

 }

 }

 }]

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.http"

 }

 }

 }, {

 "deploymentId" : "mystream.log",

 "state" : "deploying",

 "instances" : {

 "_embedded" : {

 "appInstanceStatusResourceList" : [{

 "instanceId" : "mystream.log-0",

 "state" : "deploying",

 "attributes" : {

 "guid" : "18869",

 "pid" : "4445",

 "port" : "18869",

 "stderr" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log/stderr_0.log",

 "stdout" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log/stdout_0.log",

 "url" : "http://10.194.6.12:18869",

 "working.dir" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log"

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.log/instances/mystream.log-0"

 }

 }

 }]

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.log"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps?page=0&size=20"

 }

 },

 "page" : {

 "size" : 20,

 "totalElements" : 2,

 "totalPages" : 1,

 "number" : 0

 }

}

Querying all Instances of a Single App

To retrieve information about all instances of a particular app, query the /runtime/apps/<appId>/
instances endpoint using GET.

Request structure

GET /runtime/apps HTTP/1.1

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 133

Accept: application/json

Host: localhost:9393

Example request

$ curl 'http://localhost:9393/runtime/apps' -i -H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 2553

{

 "_embedded" : {

 "appStatusResourceList" : [{

 "deploymentId" : "mystream.http",

 "state" : "deploying",

 "instances" : {

 "_embedded" : {

 "appInstanceStatusResourceList" : [{

 "instanceId" : "mystream.http-0",

 "state" : "deploying",

 "attributes" : {

 "guid" : "61350",

 "pid" : "4460",

 "port" : "61350",

 "stderr" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http/stderr_0.log",

 "stdout" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http/stdout_0.log",

 "url" : "http://10.194.6.12:61350",

 "working.dir" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http"

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.http/instances/mystream.http-0"

 }

 }

 }]

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.http"

 }

 }

 }, {

 "deploymentId" : "mystream.log",

 "state" : "deploying",

 "instances" : {

 "_embedded" : {

 "appInstanceStatusResourceList" : [{

 "instanceId" : "mystream.log-0",

 "state" : "deploying",

 "attributes" : {

 "guid" : "18869",

 "pid" : "4445",

 "port" : "18869",

 "stderr" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log/stderr_0.log",

 "stdout" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log/stdout_0.log",

 "url" : "http://10.194.6.12:18869",

 "working.dir" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log"

 },

 "_links" : {

 "self" : {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 134

 "href" : "http://localhost:9393/runtime/apps/mystream.log/instances/mystream.log-0"

 }

 }

 }]

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.log"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps?page=0&size=20"

 }

 },

 "page" : {

 "size" : 20,

 "totalElements" : 2,

 "totalPages" : 1,

 "number" : 0

 }

}

Querying a Single Instance of a Single App

Finally, to retrieve information about a particuler instance of a particular app, query the /runtime/
apps/<appId>/instances/<instanceId> endpoint using GET.

Request structure

GET /runtime/apps HTTP/1.1

Accept: application/json

Host: localhost:9393

Example request

$ curl 'http://localhost:9393/runtime/apps' -i -H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 2553

{

 "_embedded" : {

 "appStatusResourceList" : [{

 "deploymentId" : "mystream.http",

 "state" : "deploying",

 "instances" : {

 "_embedded" : {

 "appInstanceStatusResourceList" : [{

 "instanceId" : "mystream.http-0",

 "state" : "deploying",

 "attributes" : {

 "guid" : "61350",

 "pid" : "4460",

 "port" : "61350",

 "stderr" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http/stderr_0.log",

 "stdout" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http/stdout_0.log",

 "url" : "http://10.194.6.12:61350",

 "working.dir" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705624/

mystream.http"

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 135

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.http/instances/mystream.http-0"

 }

 }

 }]

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.http"

 }

 }

 }, {

 "deploymentId" : "mystream.log",

 "state" : "deploying",

 "instances" : {

 "_embedded" : {

 "appInstanceStatusResourceList" : [{

 "instanceId" : "mystream.log-0",

 "state" : "deploying",

 "attributes" : {

 "guid" : "18869",

 "pid" : "4445",

 "port" : "18869",

 "stderr" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log/stderr_0.log",

 "stdout" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log/stdout_0.log",

 "url" : "http://10.194.6.12:18869",

 "working.dir" : "/tmp/spring-cloud-dataflow-3285420077037471061/mystream-1505396705500/

mystream.log"

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.log/instances/mystream.log-0"

 }

 }

 }]

 }

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps/mystream.log"

 }

 }

 }]

 },

 "_links" : {

 "self" : {

 "href" : "http://localhost:9393/runtime/apps?page=0&size=20"

 }

 },

 "page" : {

 "size" : 20,

 "totalElements" : 2,

 "totalPages" : 1,

 "number" : 0

 }

}

40.9 Metrics for Stream Applications

This REST endpoint exposes metrics for stream applications. This REST enpoint requires the Metrics
Collector application to be running as a separate service. If not running, this endpoint will return an
empty response.

https://github.com/spring-cloud/spring-cloud-dataflow-metrics-collector
https://github.com/spring-cloud/spring-cloud-dataflow-metrics-collector

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 136

Note

In order to learn more about the Metrics Collector, please also refer to chapter Section 15.2,
“Monitoring Deployed Applications”

Request structure

For example, a typical request may look like:

GET /metrics/streams HTTP/1.1

Accept: application/json

Host: localhost:9393

Example request

$ curl 'http://localhost:9393/metrics/streams' -i -H 'Accept: application/json'

Response structure

This REST endpoint uses Hystrix via the Spring Cloud Netflix project under the covers to make a proxy
HTTP request to the Metrics Collector.

Example response

Therefore, the endpoint will not generate an error in case the Metrics Collector is not running, but rather
gracefully degrade and return an empty response such as the following:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 3

[]

However, if metrics are being collected and the Metrics Collector is running you should see a response
similar to the listing below. The metrics data returned in the listing below is based on the example stream
definition created in chapter Section 15.2, “Monitoring Deployed Applications” time | log with two
instances of each application deployed.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Content-Length: 30240

[{

 "name" : "foostream",

 "applications" : [{

 "name" : "log120RS",

 "instances" : [{

 "guid" : "13208",

 "index" : 1,

 "properties" : {

 "spring.cloud.dataflow.stream.app.label" : "log120RS",

 "spring.application.index" : "1",

 "spring.application.name" : "log-sink",

 "spring.cloud.dataflow.stream.name" : "foostream",

 "spring.cloud.application.guid" : "13208",

 "spring.cloud.dataflow.stream.app.type" : "sink",

 "spring.cloud.application.group" : "foostream"

 },

 "metrics" : [{

 "name" : "integration.channel.input.errorRate.mean",

 "value" : 0.0

 }, {

https://github.com/Netflix/Hystrix
https://github.com/spring-cloud/spring-cloud-netflix

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 137

 "name" : "integration.channel.input.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.sendCount",

 "value" : 373.0

 }, {

 "name" : "integration.channel.input.sendRate.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.input.sendRate.max",

 "value" : 2.01

 }, {

 "name" : "integration.channel.input.sendRate.min",

 "value" : 0.7

 }, {

 "name" : "integration.channel.input.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.sendRate.count",

 "value" : 373.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.min",

 "value" : 0.0

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 138

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendCount",

 "value" : 74.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.max",

 "value" : 13.49

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.min",

 "value" : 5.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.count",

 "value" : 74.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.mean",

 "value" : 0.22

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.max",

 "value" : 5.42

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.min",

 "value" : 0.11

 }, {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 139

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.stdev",

 "value" : 0.17

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.count",

 "value" : 373.0

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.activeCount",

 "value" : 0.0

 }, {

 "name" : "integration.handler.logSinkHandler.duration.mean",

 "value" : 0.22

 }, {

 "name" : "integration.handler.logSinkHandler.duration.max",

 "value" : 5.4

 }, {

 "name" : "integration.handler.logSinkHandler.duration.min",

 "value" : 0.11

 }, {

 "name" : "integration.handler.logSinkHandler.duration.stdev",

 "value" : 0.17

 }, {

 "name" : "integration.handler.logSinkHandler.duration.count",

 "value" : 373.0

 }, {

 "name" : "integration.handler.logSinkHandler.activeCount",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.mean",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.max",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.min",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.stdev",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.count",

 "value" : 0.0

 }, {

 "name" : "integration.handler._org.springframework.integration.errorLogger.handler.activeCount",

 "value" : 0.0

 }, {

 "name" : "integration.handlerCount",

 "value" : 3.0

 }, {

 "name" : "integration.channelCount",

 "value" : 4.0

 }, {

 "name" : "integration.sourceCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.send.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.errorChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.send.mean",

 "value" : 0.2

 }, {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 140

 "name" : "integration.channel.nullChannel.send.mean",

 "value" : 0.0

 }]

 }, {

 "guid" : "60633",

 "index" : 0,

 "properties" : {

 "spring.cloud.dataflow.stream.app.label" : "log120RS",

 "spring.application.index" : "0",

 "spring.application.name" : "log-sink",

 "spring.cloud.dataflow.stream.name" : "foostream",

 "spring.cloud.application.guid" : "60633",

 "spring.cloud.dataflow.stream.app.type" : "sink",

 "spring.cloud.application.group" : "foostream"

 },

 "metrics" : [{

 "name" : "integration.channel.input.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.sendCount",

 "value" : 372.0

 }, {

 "name" : "integration.channel.input.sendRate.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.input.sendRate.max",

 "value" : 1.98

 }, {

 "name" : "integration.channel.input.sendRate.min",

 "value" : 0.8

 }, {

 "name" : "integration.channel.input.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.sendRate.count",

 "value" : 372.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.max",

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 141

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendCount",

 "value" : 74.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.max",

 "value" : 13.09

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.min",

 "value" : 5.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.count",

 "value" : 74.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.min",

 "value" : 0.0

 }, {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 142

 "name" : "integration.channel.nullChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.mean",

 "value" : 0.22

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.max",

 "value" : 3.46

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.min",

 "value" : 0.12

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.stdev",

 "value" : 0.18

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.duration.count",

 "value" : 372.0

 }, {

 "name" :

 "integration.handler.org.springframework.cloud.stream.app.log.sink.LogSinkConfiguration.logSinkHandler.serviceActivator.handler.activeCount",

 "value" : 0.0

 }, {

 "name" : "integration.handler.logSinkHandler.duration.mean",

 "value" : 0.21

 }, {

 "name" : "integration.handler.logSinkHandler.duration.max",

 "value" : 2.84

 }, {

 "name" : "integration.handler.logSinkHandler.duration.min",

 "value" : 0.11

 }, {

 "name" : "integration.handler.logSinkHandler.duration.stdev",

 "value" : 0.18

 }, {

 "name" : "integration.handler.logSinkHandler.duration.count",

 "value" : 372.0

 }, {

 "name" : "integration.handler.logSinkHandler.activeCount",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.mean",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.max",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.min",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.stdev",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.count",

 "value" : 0.0

 }, {

 "name" : "integration.handler._org.springframework.integration.errorLogger.handler.activeCount",

 "value" : 0.0

 }, {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 143

 "name" : "integration.handlerCount",

 "value" : 3.0

 }, {

 "name" : "integration.channelCount",

 "value" : 4.0

 }, {

 "name" : "integration.sourceCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.send.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.errorChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.send.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.nullChannel.send.mean",

 "value" : 0.0

 }]

 }],

 "aggregateMetrics" : [{

 "name" : "integration.channel.nullChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.send.mean",

 "value" : 0.4

 }, {

 "name" : "integration.channel.errorChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.input.send.mean",

 "value" : 2.0

 }]

 }, {

 "name" : "time120RS",

 "instances" : [{

 "guid" : "50467",

 "index" : 0,

 "properties" : {

 "spring.cloud.dataflow.stream.app.label" : "time120RS",

 "spring.application.index" : "0",

 "spring.application.name" : "time-source",

 "spring.cloud.dataflow.stream.name" : "foostream",

 "spring.cloud.application.guid" : "50467",

 "spring.cloud.dataflow.stream.app.type" : "source",

 "spring.cloud.application.group" : "foostream"

 },

 "metrics" : [{

 "name" : "integration.channel.output.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.sendCount",

 "value" : 369.0

 }, {

 "name" : "integration.channel.output.sendRate.mean",

 "value" : 1.0

 }, {

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 144

 "name" : "integration.channel.output.sendRate.max",

 "value" : 1.02

 }, {

 "name" : "integration.channel.output.sendRate.min",

 "value" : 1.0

 }, {

 "name" : "integration.channel.output.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.sendRate.count",

 "value" : 369.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendCount",

 "value" : 73.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.max",

 "value" : 11.05

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.min",

 "value" : 5.0

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 145

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.count",

 "value" : 73.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.mean",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.max",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.min",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.stdev",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.count",

 "value" : 0.0

 }, {

 "name" : "integration.handler._org.springframework.integration.errorLogger.handler.activeCount",

 "value" : 0.0

 }, {

 "name" :

 "integration.source.org.springframework.cloud.stream.app.time.source.TimeSourceConfiguration.publishTime.inboundChannelAdapter.source.messageCount",

 "value" : 369.0

 }, {

 "name" : "integration.handlerCount",

 "value" : 1.0

 }, {

 "name" : "integration.channelCount",

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 146

 "value" : 4.0

 }, {

 "name" : "integration.sourceCount",

 "value" : 1.0

 }, {

 "name" : "integration.channel.output.send.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.errorChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.send.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.nullChannel.send.mean",

 "value" : 0.0

 }]

 }, {

 "guid" : "61434",

 "index" : 1,

 "properties" : {

 "spring.cloud.dataflow.stream.app.label" : "time120RS",

 "spring.application.index" : "1",

 "spring.application.name" : "time-source",

 "spring.cloud.dataflow.stream.name" : "foostream",

 "spring.cloud.application.guid" : "61434",

 "spring.cloud.dataflow.stream.app.type" : "source",

 "spring.cloud.application.group" : "foostream"

 },

 "metrics" : [{

 "name" : "integration.channel.output.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.sendCount",

 "value" : 375.0

 }, {

 "name" : "integration.channel.output.sendRate.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.output.sendRate.max",

 "value" : 1.02

 }, {

 "name" : "integration.channel.output.sendRate.min",

 "value" : 1.0

 }, {

 "name" : "integration.channel.output.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.output.sendRate.count",

 "value" : 375.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.min",

 "value" : 0.0

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 147

 }, {

 "name" : "integration.channel.errorChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.errorChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.errorRate.count",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendCount",

 "value" : 74.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.max",

 "value" : 12.88

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.min",

 "value" : 5.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.sendRate.count",

 "value" : 74.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.errorRate.count",

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 148

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendCount",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.max",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.min",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.stdev",

 "value" : 0.0

 }, {

 "name" : "integration.channel.nullChannel.sendRate.count",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.mean",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.max",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.min",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.stdev",

 "value" : 0.0

 }, {

 "name" :

 "integration.handler._org.springframework.integration.errorLogger.handler.duration.count",

 "value" : 0.0

 }, {

 "name" : "integration.handler._org.springframework.integration.errorLogger.handler.activeCount",

 "value" : 0.0

 }, {

 "name" :

 "integration.source.org.springframework.cloud.stream.app.time.source.TimeSourceConfiguration.publishTime.inboundChannelAdapter.source.messageCount",

 "value" : 375.0

 }, {

 "name" : "integration.handlerCount",

 "value" : 1.0

 }, {

 "name" : "integration.channelCount",

 "value" : 4.0

 }, {

 "name" : "integration.sourceCount",

 "value" : 1.0

 }, {

 "name" : "integration.channel.output.send.mean",

 "value" : 1.0

 }, {

 "name" : "integration.channel.errorChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.send.mean",

 "value" : 0.2

 }, {

 "name" : "integration.channel.nullChannel.send.mean",

 "value" : 0.0

 }]

 }],

 "aggregateMetrics" : [{

 "name" : "integration.channel.output.send.mean",

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 149

 "value" : 2.0

 }, {

 "name" : "integration.channel.nullChannel.send.mean",

 "value" : 0.0

 }, {

 "name" : "integration.channel.applicationMetrics.send.mean",

 "value" : 0.4

 }, {

 "name" : "integration.channel.errorChannel.send.mean",

 "value" : 0.0

 }]

 }]

}]

Part X. Appendices
Having trouble with Spring Cloud Data Flow, We’d like to help!

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud-
dataflow.

• Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-dataflow
http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow/issues

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 151

Appendix A. Data Flow Template
As described in the previous chapter, Spring Cloud Data Flow’s functionality is completely exposed via
REST endpoints. While you can use those endpoints directly, Spring Cloud Data Flow also provides a
Java-based API, which makes using those REST endpoints even easier.

The central entrypoint is the DataFlowTemplate class in package
org.springframework.cloud.dataflow.rest.client.

This class implements the interface DataFlowOperations and delegates to sub-templates that
provide the specific functionality for each feature-set:

Interface Description

StreamOperations REST client for stream operations

CounterOperations REST client for counter operations

FieldValueCounterOperations REST client for field value counter operations

AggregateCounterOperations REST client for aggregate counter operations

TaskOperations REST client for task operations

JobOperations REST client for job operations

AppRegistryOperations REST client for app registry operations

CompletionOperations REST client for completion operations

RuntimeOperations REST Client for runtime operations

When the DataFlowTemplate is being initialized, the sub-templates will be discovered via the REST
relations, which are provided by HATEOAS.1

Important

If a resource cannot be resolved, the respective sub-template will result in being NULL. A
common cause is that Spring Cloud Data Flow offers for specific sets of features to be enabled/
disabled when launching. For more information see Chapter 12, Feature Toggles.

A.1 Using the Data Flow Template

When using the Data Flow Template the only needed Data Flow dependency is the Spring Cloud Data
Flow Rest Client:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dataflow-rest-client</artifactId>

 <version>1.2.4.BUILD-SNAPSHOT</version>

</dependency>

With that dependency you will get the DataFlowTemplate class as well as all needed dependencies
to make calls to a Spring Cloud Data Flow server.

1HATEOAS stands for Hypermedia as the Engine of Application State

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 152

When instantiating the DataFlowTemplate, you will also pass in a RestTemplate. Please be aware
that the needed RestTemplate requires some additional configuration to be valid in the context of
the DataFlowTemplate. When declaring a RestTemplate as a bean, the following configuration will
suffice:

 @Bean

 public static RestTemplate restTemplate() {

 RestTemplate restTemplate = new RestTemplate();

 restTemplate.setErrorHandler(new VndErrorResponseErrorHandler(restTemplate.getMessageConverters()));

 for(HttpMessageConverter<?> converter : restTemplate.getMessageConverters()) {

 if (converter instanceof MappingJackson2HttpMessageConverter) {

 final MappingJackson2HttpMessageConverter jacksonConverter =

 (MappingJackson2HttpMessageConverter) converter;

 jacksonConverter.getObjectMapper()

 .registerModule(new Jackson2HalModule())

 .addMixIn(JobExecution.class, JobExecutionJacksonMixIn.class)

 .addMixIn(JobParameters.class, JobParametersJacksonMixIn.class)

 .addMixIn(JobParameter.class, JobParameterJacksonMixIn.class)

 .addMixIn(JobInstance.class, JobInstanceJacksonMixIn.class)

 .addMixIn(ExitStatus.class, ExitStatusJacksonMixIn.class)

 .addMixIn(StepExecution.class, StepExecutionJacksonMixIn.class)

 .addMixIn(ExecutionContext.class, ExecutionContextJacksonMixIn.class)

 .addMixIn(StepExecutionHistory.class, StepExecutionHistoryJacksonMixIn.class);

 }

 }

 return restTemplate;

 }

Now you can instantiate the DataFlowTemplate with:

DataFlowTemplate dataFlowTemplate = new DataFlowTemplate(

 new URI("http://localhost:9393/"), restTemplate); ❶

❶ The URI points to the ROOT of your Spring Cloud Data Flow Server.

Depending on your requirements, you can now make calls to the server. For instance, if you like to get
a list of currently available applications you can execute:

PagedResources<AppRegistrationResource> apps = dataFlowTemplate.appRegistryOperations().list();

System.out.println(String.format("Retrieved %s application(s)",

 apps.getContent().size()));

for (AppRegistrationResource app : apps.getContent()) {

 System.out.println(String.format("App Name: %s, App Type: %s, App URI: %s",

 app.getName(),

 app.getType(),

 app.getUri()));

}

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 153

Appendix B. ‘How-to’ guides

B.1 Configure Maven Properties

You can set the maven properties such as local maven repository location, remote maven repositories
and their authentication credentials including the proxy server properties via commandline properties
when starting the Dataflow server or using the SPRING_APPLICATION_JSON environment property for
the Dataflow server.

The remote maven repositories need to be configured explicitly if the apps are resolved using maven
repository except for local Data Flow server. The other Data Flow server implementations (that use
maven resources for app artifacts resolution) have no default value for remote repositories. The local
server has repo.spring.io/libs-snapshot as the default remote repository.

To pass the properties as commandline options:

$ java -jar <dataflow-server>.jar --maven.localRepository=mylocal

--maven.remote-repositories.repo1.url=https://repo1

--maven.remote-repositories.repo1.auth.username=repo1user

--maven.remote-repositories.repo1.auth.password=repo1pass

--maven.remote-repositories.repo2.url=https://repo2 --maven.proxy.host=proxyhost

--maven.proxy.port=9018 --maven.proxy.auth.username=proxyuser

--maven.proxy.auth.password=proxypass

or, using the SPRING_APPLICATION_JSON environment property:

export SPRING_APPLICATION_JSON='{ "maven": { "local-repository": "local","remote-repositories":

 { "repo1": { "url": "https://repo1", "auth": { "username": "repo1user", "password": "repo1pass" } },

"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyhost", "port":

 9018, "auth": { "username": "proxyuser", "password": "proxypass" } } } }'

Formatted JSON:

SPRING_APPLICATION_JSON='{

 "maven": {

 "local-repository": "local",

 "remote-repositories": {

 "repo1": {

 "url": "https://repo1",

 "auth": {

 "username": "repo1user",

 "password": "repo1pass"

 }

 },

 "repo2": {

 "url": "https://repo2"

 }

 },

 "proxy": {

 "host": "proxyhost",

 "port": 9018,

 "auth": {

 "username": "proxyuser",

 "password": "proxypass"

 }

 }

 }

}'

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 154

Note

Depending on Spring Cloud Data Flow server implementation, you may have
to pass the environment properties using the platform specific environment-setting
capabilities. For instance, in Cloud Foundry, you’d be passing them as cf set-env

SPRING_APPLICATION_JSON.

B.2 Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

B.3 Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it’d be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you’d like to enable DEBUG logs for the local-deployer, you’d be starting the server
with following.

$ java -jar <dataflow-server>.jar --logging.level.org.springframework.cloud.deployer.spi.local=DEBUG

(where, org.springframework.cloud.deployer.spi.local is the global package for
everything local-deployer related)

2. For instance, if you’d like to enable DEBUG logs for the cloudfoundry-deployer, you’d be setting the
following environment variable and upon restaging the dataflow-server, we will see more logs around
request, response and the elaborate stack traces (upon failures). The cloudfoundry-deployer uses
cf-java-client, so we will have to enable DEBUG logs for this library.

$ cf set-env dataflow-server JAVA_OPTS '-Dlogging.level.cloudfoundry-client=DEBUG'

$ cf restage dataflow-server

(where, cloudfoundry-client is the global package for everything cf-java-client related)

3. If there’s a need to review Reactor logs, which is used by the cf-java-client, then the following
would be helpful.

$ cf set-env dataflow-server JAVA_OPTS '-Dlogging.level.cloudfoundry-client=DEBUG -

Dlogging.level.reactor.ipc.netty=DEBUG'

$ cf restage dataflow-server

(where, reactor.ipc.netty is the global package for everything reactor-netty related)

Note

Similar to the local-deployer and cloudfoundry-deployer options as discussed above,
there are equivalent settings available for Apache YARN, Apache Mesos and Kubernetes

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&q=spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/cloudfoundry/cf-java-client

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 155

variants, too. Check out the respective SPI implementations to find out more details about the
packages to configure for logging.

B.4 Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

For instance, if you’d have to troubleshoot the header and payload specifics that are being passed
around source, processor and sink channels, you’d be deploying the stream with the following options.

dataflow:>stream create foo --definition "http --logging.level.org.springframework.integration=DEBUG

 | transform --logging.level.org.springframework.integration=DEBUG | log --

logging.level.org.springframework.integration=DEBUG" --deploy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via deployment properties when deploying the stream.

dataflow:>stream deploy foo --properties "app.*.logging.level.org.springframework.integration=DEBUG"

Log redirect

Given that each application is a separate process with each maintaining it’s own set of logs, accessing
individual logs could be a bit inconvinient especially in the early stages of the development when logs
are accessed more often (i.e., debugging, troubleshooting, etc.). Since it is also a common pattern to
rely on Local SCDF Server which deploys each application as a local JVM process using local-deployer,
the framework provides support for redirecting such logs to a parent process’s streams (both stdout and
stderr). So essentially with Local SCDF Server the application logs will appear in the logs of running
Local SCDF Server.

Typically when you deploy the stream you will see something like this in the server logs:

017-06-28 09:50:16.372 INFO 41161 --- [nio-9393-exec-7] o.s.c.d.spi.local.LocalAppDeployer :

 Deploying app with deploymentId mystream.myapp instance 0.

 Logs will be in /var/folders/l2/63gcnd9d7g5dxxpjbgr0trpw0000gn/T/spring-cloud-

dataflow-5939494818997196225/mystream-1498661416369/mystream.myapp

However, by providing local.inheritLogging=true as a deployment property you will see the
following:

017-06-28 09:50:16.372 INFO 41161 --- [nio-9393-exec-7] o.s.c.d.spi.local.LocalAppDeployer :

 Deploying app with deploymentId mystream.myapp instance 0.

 Logs will be inherited.

After which the application logs will appear along side the server logs.

For example:

stream deploy --name mystream --properties "deployer.*.local.inheritLogging=true”

The above will enable log redirection for each application in the stream

stream deploy --name mystream --properties "deployer.myapp.local.inheritLogging=true”

The above will enable log redirection for application named ‘my app’ only.

https://github.com/spring-cloud?utf8=%E2%9C%93&q=spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer-local

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 156

Note

Log redirect is only supported with local-deployer.

B.5 Frequently asked questions

In this section, we will review the frequently discussed questions in Spring Cloud Data Flow.

Advanced SpEL expressions

One of the powerful features of SpEL expressions is functions. Spring Integration provides jsonPath()
and xpath() out-of-the-box SpEL-functions, if appropriate libraries are in the classpath. All the
provided Spring Cloud Stream application starters are supplied with the json-path and spring-
integration-xml jars, thus we can use those SpEL-functions in Spring Cloud Data Flow streams
whenever expressions are possible. For example we can transform JSON-aware payload from the
HTTP request using some jsonPath() expression:

dataflow:>stream create jsonPathTransform --definition "http | transform --

expression=#jsonPath(payload,'$.price') | log" --deploy

...

dataflow:> http post --target http://localhost:8080 --data {"symbol":"SCDF","price":72.04}

dataflow:> http post --target http://localhost:8080 --data {"symbol":"SCDF","price":72.06}

dataflow:> http post --target http://localhost:8080 --data {"symbol":"SCDF","price":72.08}

In this sample we apply jsonPath for the incoming payload to extract just only the price field value.
Similar syntax can be used with splitter or filter expression options. Actually any available
SpEL-based option has access to the built-in SpEL-functions. For example we can extract some value
from JSON data to calculate the partitionKey before sending output to the Binder:

dataflow:>stream deploy foo --

properties "deployer.transform.count=2,app.transform.producer.partitionKeyExpression=#jsonPath(payload,'$.symbol')"

The same syntax can be applied for xpath() SpEL-function when you deal with XML data. Any
other custom SpEL-function can also be used, but for this purpose you should build a library with the
@Configuration class containing an appropriate SpelFunctionFactoryBean @Bean definition.
The target Spring Cloud Stream application starter should be re-packaged to supply such a custom
extension via built-in Spring Boot @ComponentScan mechanism or auto-configuration hook.

How to use JDBC-sink?

The JDBC-sink can be used to insert message payload data into a relational database table. By default,
it inserts the entire payload into a table named after the jdbc.table-name property, and if it is not
set, by default the application expects to use a table with the name messages. To alter this behavior,
the JDBC sink accepts several options that you can pass using the --foo=bar notation in the stream, or
change globally. The JDBC sink has a jdbc.initialize property that if set to true will result in the
sink creating a table based on the specified configuration when the it starts up. If that initialize property
is false, which is the default, you will have to make sure that the table to use is already available.

A stream definition using jdbc sink relying on all defaults with MySQL as the backing database looks
like the following. In this example, the system time is persisted in MySQL for every second.

dataflow:>stream create --name mydata --definition "time | jdbc --spring.datasource.url=jdbc:mysql://

localhost:3306/test --spring.datasource.username=root --spring.datasource.password=root --

spring.datasource.driver-class-name=org.mariadb.jdbc.Driver" --deploy

For this to work, you’d have to have the following table in the MySQL database.

https://github.com/spring-cloud/spring-cloud-deployer-local
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-ref-functions
http://docs.spring.io/spring-integration/reference/html/spel.html#spel-functions
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-jdbc-sink

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 157

CREATE TABLE test.messages

(

 payload varchar(255)

);

mysql> desc test.messages;

+---------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+--------------+------+-----+---------+-------+

| payload | varchar(255) | YES | | NULL | |

+---------+--------------+------+-----+---------+-------+

1 row in set (0.00 sec)

mysql> select * from test.messages;

+-------------------+

| payload |

+-------------------+

| 04/25/17 09:10:04 |

| 04/25/17 09:10:06 |

| 04/25/17 09:10:07 |

| 04/25/17 09:10:08 |

| 04/25/17 09:10:09 |

.............

.............

.............

How to use multiple message-binders?

For situations where the data is consumed and processed between two different message brokers,
Spring Cloud Data Flow provides easy to override global configurations, out-of-the-box bridge-
processor, and DSL primitives to build these type of topologies.

Let’s assume we have data queueing up in RabbitMQ (e.g., queue = fooRabbit) and the requirement
is to consume all the payloads and publish them to Apache Kafka (e.g., topic = barKafka), as the
destination for downstream processing.

Follow the global application of configurations to define multiple binder configurations.

Apache Kafka Global Configurations (i.e., identified by "kafka1")

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.kafka1.type=kafka

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.binder.brokers=localhost:9092

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.binder.zkNodes=localhost:2181

RabbitMQ Global Configurations (i.e., identified by "rabbit1")

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.rabbit1.type=rabbit

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.rabbit1.environment.spring.rabbitmq.host=localhost

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.rabbit1.environment.spring.rabbitmq.port=5672

Note

In this example, both the message brokers are running locally and reachable at localhost
with respective ports.

These properties can be supplied in a ".properties" file that is accessible to the server directly or via
config-server.

java -jar spring-cloud-dataflow-server-local/target/spring-cloud-dataflow-server-local-1.1.4.RELEASE.jar

 --spring.config.location=<PATH-TO-FILE>/foo.properties

Spring Cloud Data Flow internally uses bridge-processor to directly connect different named
channel destinations. Since we are publishing and subscribing from two different messaging systems,
you’d have to build the bridge-processor with both RabbitMQ and Apache Kafka binders in the

https://github.com/spring-cloud-stream-app-starters/bridge
https://github.com/spring-cloud-stream-app-starters/bridge

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 158

classpath. To do that, head over to start-scs.cfapps.io/ and select Bridge Processor, Kafka binder
starter, and Rabbit binder starter as the dependencies and follow the patching procedure
described in the reference guide. Specifically, for the bridge-processor, you’d have to import the
BridgeProcessorConfiguration provided by the starter.

Once you have the necessary adjustments, you can build the application. Let’s register the name of the
application as multiBinderBridge.

dataflow:>app register --type processor --name multiBinderBridge --uri file:///<PATH-TO-FILE>/

multipleBinderBridge-0.0.1-SNAPSHOT.jar

It is time to create a stream definition with the newly registered processor application.

dataflow:>stream create fooRabbitToBarKafka --definition ":fooRabbit > multiBinderBridge --

spring.cloud.stream.bindings.input.binder=rabbit1 --spring.cloud.stream.bindings.output.binder=kafka1

 > :barKafka" --deploy

Note

Since we are to consume messages from RabbitMQ (i.e., identified by rabbit1) and then
publish the payload to Apache Kafka (i.e., identified by kafka1), we are supplying them as
input and output channel settings respectively.

Note

The queue fooRabbit in RabbitMQ is where the stream is consuming events from and the
topic barKafka in Apache Kafka is where the data is finally landing.

http://start-scs.cfapps.io/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/_introduction.html#customizing-binder

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 159

Appendix C. Spring XD to SCDF
In this section you will learn all about the migration path from Spring XD to Spring Cloud Data Flow
along with the tips and tricks.

C.1 Terminology Changes

Old New

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A

Modules Applications

Admin UI Dashboard

Message Bus Binders

Batch / Job Task

C.2 Modules to Applications

If you have custom Spring XD modules, you’d have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

• Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

• There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

• If you’d like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

• Alternatively, if you’d like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

• Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts from http, file, or as hdfs
coordinates

• Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you’re expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

https://github.com/spring-cloud-stream-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-task/docs/current/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_creating_your_own_applications
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_patching_pre_built_applications

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 160

• By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

• Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

• counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the counter-
sink, then redis becomes required, and you’re expected to have your own running redis cluster

• field-value-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the field-
value-counter-sink, then redis becomes required, and you’re expected to have your own
running redis cluster

• aggregate-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the
aggregate-counter-sink, then redis becomes required, and you’re expected to have your
own running redis cluster

C.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you’re to
choose Kafka as the binder, you’d register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you’d add the following dependency
in the classpath.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka</artifactId>

 <version>1.0.2.RELEASE</version>

</dependency>

• Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

• Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 161

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by topics or topic-exchange and there’s no representation
of queues in the new architecture.

• ${xd.module.index} is not supported anymore; instead, you can directly interact with named
destinations

• stream.index changes to :<stream-name>.<label/app-name>

• for instance: ticktock.0 changes to :ticktock.time

• “topic/queue” prefixes are not required to interact with named-channels

• for instance: topic:foo changes to :foo

• for instance: stream create stream1 --definition ":foo > log"

Directed Graphs

If you’re building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'queue:foo':'queue:bar'"

 --deploy

for instance, in Spring Cloud Data Flow:

stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'foo':'bar'" --deploy

C.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

• Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a Spring Cloud
Task applications

• Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_binders
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud-task-app-starters

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 162

C.5 Shell/DSL Commands

Old Command New Command

module upload app register / app import

module list app list

module info app info

admin config server dataflow config server

job create task create

job launch task launch

job list task list

job status task status

job display task display

job destroy task destroy

job execution list task execution list

runtime modules runtime apps

C.6 REST-API

Old API New API

/modules /apps

/runtime/modules /runtime/apps

/runtime/modules/{moduleId} /runtime/apps/{appId}

/jobs/definitions /task/definitions

/jobs/deployments /task/deployments

C.7 UI / Flo

The Admin-UI is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

• (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

• Runtime: Container changes to Runtime. The notion of xd-container is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 163

• Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

• (New) Tasks:

• The sub-tab “Modules” is renamed to “Apps”

• The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

• The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

C.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper

ZooKeeper is not used in the new architecture.

RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqlServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the counter-
sink, field-value-counter-sink, or aggregate-counter-sink applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd-admin and xd-container server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

C.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

C.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 164

apache yarn, kubernetes, or apache mesos). For example, if you’re running Spring Cloud Data Flow
on Cloud Foundry, you’d download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

C.11 Hadoop Distribution Compatibility

The hdfs-sink application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

• Cloudera - cdh5

• Pivotal Hadoop - phd30

• Hortonworks Hadoop - hdp24

• Hortonworks Hadoop - hdp23

• Vanilla Hadoop - hadoop26

• Vanilla Hadoop - 2.7.x (default)

C.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.

• Deploy the server directly in a YARN cluster

• Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

C.13 Use Case Comparison

Let’s review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ticktock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-ambari

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 165

Spring XD Spring Cloud Data Flow

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Create ticktock stream

xd:>stream create ticktock --

definition “time | log” --deploy

Create ticktock stream

dataflow:>stream create ticktock --

definition “time | log” --deploy

Review ticktock results in the xd-
singlenode server console

Review ticktock results by tailing the
ticktock.log/stdout_log application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “processor” module to transform
payload to a desired format

xd:>module upload --name

toupper --type processor --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “processor” application to
transform payload to a desired format

dataflow:>app register --name

toupper --type processor --uri

<MAVEN_URI_COORDINATES>

Create a stream with custom module

xd:>stream create testupper --

definition “http | toupper | log” --

deploy

Create a stream with custom application

dataflow:>stream create testupper --

definition “http | toupper | log” --

deploy

Review results in the xd-singlenode server
console

Review results by tailing the testupper.log/
stdout_log application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 166

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “batch-job” module

xd:>module upload --name

simple-batch --type job --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “batch-job” as task application

dataflow:>app register --name

simple-batch --type task --uri

<MAVEN_URI_COORDINATES>

Create a job with custom batch-job module

xd:>job create batchtest --

definition “simple-batch”

Create a task with custom batch-job application

dataflow:>task create batchtest --

definition “simple-batch”

Deploy job

xd:>job deploy batchtest

NA

Launch job

xd:>job launch batchtest

Launch task

dataflow:>task launch batchtest

Review results in the xd-singlenode server
console as well as Jobs tab in UI (executions
sub-tab should include all step details)

Review results by tailing the batchtest/
stdout_log application logs as well as Task
tab in UI (executions sub-tab should include all
step details)

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 167

Appendix D. Building
To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

D.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-docs -am

D.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://spring.io/tools
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 168

expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Reference Guide

1.2.4.BUILD-SNAPSHOT Spring Cloud Data Flow 169

Appendix E. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

E.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

E.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Reference Guide
	Table of Contents
	Part I. Getting started
	1. System Requirements
	2. Deploying Spring Cloud Data Flow Local Server
	2.1 Maven Configuration

	3. Application Configuration

	Part II. Applications
	Part III. Architecture
	4. Introduction
	5. Microservice Architectural Style
	5.1 Comparison to other Platform architectures

	6. Streaming Applications
	6.1 Imperative Programming Model
	6.2 Functional Programming Model

	7. Streams
	7.1 Topologies
	7.2 Concurrency
	7.3 Partitioning
	7.4 Message Delivery Guarantees

	8. Analytics
	9. Task Applications
	10. Data Flow Server
	10.1 Endpoints
	10.2 Customization
	10.3 Security

	11. Runtime
	11.1 Fault Tolerance
	11.2 Resource Management
	11.3 Scaling at runtime
	11.4 Application Versioning

	Part IV. Server Configuration
	12. Feature Toggles
	13. Database Configuration
	13.1 Adding a custom JDBC driver

	14. Security
	14.1 Enabling HTTPS
	Using Self-Signed Certificates
	Self-Signed Certificates and the Shell

	14.2 Traditional Authentication
	Single User Authentication
	File based authentication
	LDAP Authentication
	LDAP Transport Security

	Shell Authentication
	Customizing authorization
	Authorization - Shell and Dashboard Behavior
	Authorization with Ldap

	14.3 OAuth 2.0
	OAuth REST Endpoint Authorization
	OAuth Authentication using the Spring Cloud Data Flow Shell
	OAuth2 Authentication Examples
	Local OAuth2 Server
	Authentication using GitHub

	14.4 Securing the Spring Boot Management Endpoints

	15. Monitoring and Management
	15.1 Spring Boot Admin
	15.2 Monitoring Deployed Applications
	15.3 Log and DataDog MetricWriter

	Part V. Shell
	16. Shell Options
	17. Listing available commands
	18. Tab Completion
	19. White space and quote rules
	19.1 Quotes and Escaping
	Shell rules
	DSL parsing rules
	SpEL syntax and SpEL literals
	Putting it all together

	Part VI. Streams
	20. Introduction
	20.1 Stream Pipeline DSL
	20.2 Application properties

	21. Lifecycle of Streams
	21.1 Register a Stream App
	Whitelisting application properties
	Creating and using a dedicated metadata artifact
	Using the companion artifact

	21.2 Creating custom applications
	21.3 Creating a Stream
	Application properties
	Passing application properties when creating a stream

	Deployment properties
	Application properties versus Deployer properties
	Passing instance count as deployment property
	Inline vs file reference properties
	Passing application properties when deploying a stream
	Passing Spring Cloud Stream properties for the application
	Passing per-binding producer consumer properties
	Passing stream partition properties during stream deployment
	Passing application content type properties
	Overriding application properties during stream deployment

	Common application properties

	21.4 Destroying a Stream
	21.5 Deploying and Undeploying Streams

	22. Stream DSL
	22.1 Tap a Stream
	22.2 Using Labels in a Stream
	22.3 Named Destinations
	22.4 Fan-in and Fan-out

	23. Stream applications with multiple binder configurations
	24. Examples
	24.1 Simple Stream Processing
	24.2 Stateful Stream Processing
	24.3 Other Source and Sink Application Types

	Part VII. Tasks
	25. Introduction
	26. The Lifecycle of a Task
	26.1 Creating a Task Application
	Task Database Configuration

	26.2 Registering a Task Application
	26.3 Creating a Task Definition
	26.4 Launching a Task
	Common application properties

	26.5 Reviewing Task Executions
	26.6 Destroying a Task Definition

	27. Subscribing to Task/Batch Events
	28. Launching Tasks from a Stream
	28.1 TriggerTask
	28.2 TaskLaunchRequest-transform

	29. Composed Tasks
	29.1 Configuring the Composed Task Runner
	Registering the Composed Task Runner
	Configuring the Composed Task Runner

	29.2 The Lifecycle of a Composed Task
	Creating a Composed Task
	Task Application Parameters

	Launching a Composed Task
	Exit Statuses

	Destroying a Composed Task
	Stopping a Composed Task
	Restarting a Composed Task

	30. Composed Tasks DSL
	30.1 Conditional Execution
	30.2 Transitional Execution
	Basic Transition
	Transition With a Wildcard
	Transition With a Following Conditional Execution

	30.3 Split Execution
	Split Containing Conditional Execution

	Part VIII. Dashboard
	31. Introduction
	32. Apps
	32.1 Bulk Import of Applications

	33. Runtime
	34. Streams
	35. Create Stream
	36. Tasks
	36.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	36.2 Definitions
	Creating Task Definitions using the bulk define interface
	Creating Composed Task Definitions
	Launching Tasks

	36.3 Executions

	37. Jobs
	37.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	38. Analytics

	Part IX. REST API Guide
	39. Overview
	39.1 HTTP verbs
	39.2 HTTP status codes
	39.3 Headers
	39.4 Errors
	39.5 Hypermedia

	40. Resources
	40.1 Index
	Accessing the index
	Request structure
	Example request
	Response structure
	Example response
	Links

	40.2 Server Meta Information
	Retrieving information about the server
	Request structure
	Example request
	Response structure

	40.3 Registered Applications
	Listing Applications
	Request structure
	Request parameters
	Example request
	Response structure

	Getting Information on a partical Application
	Request structure
	Path parameters
	Example request
	Response structure

	Registering a New Application
	Request structure
	Request parameters
	Path parameters
	Example request
	Response structure

	Unregistering an Application
	Request structure
	Path parameters
	Example request
	Response structure

	Registering Applications in Bulk
	Request structure
	Request parameters
	Example request
	Response structure

	40.4 Stream Definitions
	Creating a new Stream Definition
	Request structure
	Request parameters
	Example request
	Response structure

	List all Stream Definitions
	Request structure
	Request parameters
	Example request
	Response structure

	List related Stream Definitions
	Request structure
	Request parameters
	Example request
	Response structure

	Delete a single Stream Definition
	Request structure
	Request parameters
	Example request
	Response structure

	Delete all Stream Definitions
	Request structure
	Request parameters
	Example request
	Response structure

	40.5 Stream Deployments
	Example "stream deploy" request for a ticktock stream

	40.6 Task Definitions
	Creating a new Task Definition
	Request structure
	Request parameters
	Example request
	Response structure

	List all Task Definitions
	Request structure
	Request parameters
	Example request
	Response structure

	Retrieve Task Definition Detail
	Request structure
	Request parameters
	Example request
	Response structure

	Delete Task Definition
	Request structure
	Request parameters
	Example request
	Response structure

	40.7 Task Executions
	Launching a Task
	Request structure
	Request parameters
	Example request
	Response structure

	List All Task Executions
	Request structure
	Request parameters
	Example request
	Response structure

	List All Task Executions With a Specified Task Name
	Request structure
	Request parameters
	Example request
	Response structure

	Task Execution Detail
	Request structure
	Request parameters
	Example request
	Response structure

	Delete Task Execution
	Request structure
	Request parameters
	Example request
	Response structure

	40.8 Runtime Information about Applications
	Listing All Applications at Runtime
	Request structure
	Example request
	Response structure

	Querying all Instances of a Single App
	Request structure
	Example request
	Response structure

	Querying a Single Instance of a Single App
	Request structure
	Example request
	Response structure

	40.9 Metrics for Stream Applications
	Request structure
	Example request
	Response structure
	Example response

	Part X. Appendices
	Appendix A. Data Flow Template
	A.1 Using the Data Flow Template

	Appendix B. ‘How-to’ guides
	B.1 Configure Maven Properties
	B.2 Logging
	B.3 Deployment Logs
	B.4 Application Logs
	Log redirect

	B.5 Frequently asked questions
	Advanced SpEL expressions
	How to use JDBC-sink?
	How to use multiple message-binders?

	Appendix C. Spring XD to SCDF
	C.1 Terminology Changes
	C.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	C.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	C.4 Batch to Tasks
	C.5 Shell/DSL Commands
	C.6 REST-API
	C.7 UI / Flo
	C.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	C.9 Central Configuration
	C.10 Distribution
	C.11 Hadoop Distribution Compatibility
	C.12 YARN Deployment
	C.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix D. Building
	D.1 Documentation
	D.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix E. Contributing
	E.1 Sign the Contributor License Agreement
	E.2 Code Conventions and Housekeeping

