WebTestClient

Version 5.2.0.RC1



WebTestClient is a thin shell around WebClient, using it to perform requests and
exposing a dedicated, fluent API for verifying responses. WebTestClient binds to

a WebFlux application by using a mock request and response, or it can test any
web server over an HTTP connection.

Q Kotlin users: See this section related to use of the WebTestClient.


web-reactive.pdf#webflux-client
testing.pdf#mock-objects-web-reactive
languages.pdf#kotlin-webtestclient-issue

Chapter 1. Setup

To create a WebTestClient you must choose one of several server setup options. Effectively you’re
either configuring the WebFlux application to bind to, or using a URL to connect to a running
server.

1.1. Bind to Controller

The following example shows how to create a server setup to test one @Controller at a time:
client = WebTestClient.bindToController(new TestController()).build();

The preceding example loads the WebFlux Java configuration and registers the given controller.
The resulting WebFlux application is tested without an HTTP server by using mock request and
response objects. There are more methods on the builder to customize the default WebFlux Java
configuration.

1.2. Bind to Router Function

The following example shows how to set up a server from a RouterFunction:

RouterFunction<?> route = ...
client = WebTestClient.bindToRouterFunction(route).build();

Internally, the configuration is passed to RouterFunctions.toWebHandler. The resulting WebFlux
application is tested without an HTTP server by using mock request and response objects.

1.3. Bind to ApplicationContext

The following example shows how to setup a server from the Spring configuration of your
application or some subset of it:


web-reactive.pdf#webflux-config
web-reactive.pdf#webflux-fn

@RunWith(SpringRunner.class)
@ContextConfiguration(classes = WebConfig.class) @
public class MyTests {

@Autowired
private ApplicationContext context; @

private WebTestClient client;

@Before
public void setUp() {
client = WebTestClient.bindToApplicationContext(context).build(); ®

}

@ Specify the configuration to load

@ Inject the configuration

® Create the WebTestClient

Internally, the configuration is passed to WebHttpHandlerBuilder to set up the request processing

chain. See WebHandler API for more details. The resulting WebFlux application is tested without an
HTTP server by using mock request and response objects.

1.4. Bind to Server

The following server setup option lets you connect to a running server:

client = WebTestClient.bindToServer().baseUr1("http://localhost:8080").build();

1.5. Client Builder

In addition to the server setup options described earlier, you can also configure client options,
including base URL, default headers, client filters, and others. These options are readily available
following bindToServer. For all others, you need to use configureClient() to transition from server
to client configuration, as follows:

client = WebTestClient.bindToController(new TestController())
.configureClient()
.baseUr1("/test")
.build();


web-reactive.pdf#webflux-web-handler-api

Chapter 2. Writing Tests

WebTestClient provides an API identical to WebClient up to the point of performing a request by
using exchange(). What follows after exchange() is a chained API workflow to verify responses.

Typically, you start by asserting the response status and headers, as follows:

client.get().uri("/persons/1")
.accept(MediaType.APPLICATION_JSON)
.exchange()
.expectStatus().is0k()
.expectHeader().contentType(MediaType.APPLICATION_JSON)

/] ...

Then you specify how to decode and consume the response body:

» expectBody(Class<T>): Decode to single object.
» expectBodyList(Class<T>): Decode and collect objects to List<T>.

 expectBody(): Decode to byte[] for JSON Content or an empty body.

Then you can use built-in assertions for the body. The following example shows one way to do so:

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBodyList(Person.class).hasSize(3).contains(person);

You can also go beyond the built-in assertions and create your own, as the following example
shows:

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.consumeWith(result -> {
// custom assertions (e.g. Assert])...

b

You can also exit the workflow and get a result, as follows:


web-reactive.pdf#webflux-client

EntityExchangeResult<Person> result = client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody(Person.class)
.returnResult();

When you need to decode to a target type with generics, look for the overloaded

Q methods that accept {api-spring-
framework}/core/ParameterizedTypeReference.html[ParameterizedTypeReference]
instead of Class<T>.

2.1. No Content

If the response has no content (or you do not care if it does) use Void.class, which ensures that
resources are released. The following example shows how to do so:

client.get().uri("/persons/123")
.exchange()
.expectStatus().isNotFound()
.expectBody(Void.class);

Alternatively, if you want to assert there is no response content, you can use code similar to the
following:

client.post().uri("/persons")
.body(personMono, Person.class)
.exchange()
.expectStatus().isCreated()
.expectBody().isEmpty();

2.2. JSON Content

When you use expectBody(), the response is consumed as a byte[]. This is useful for raw content
assertions. For example, you can use JSONAssert to verify JSON content, as follows:

client.get().uri("/persons/1")
.exchange()
.expectStatus().is0k()
.expectBody()
.json("{\"name\":\"Jane\"}")

You can also use JSONPath expressions, as follows:


https://jsonassert.skyscreamer.org
https://github.com/jayway/JsonPath

client.get().uri("/persons")
.exchange()
.expectStatus().is0k()
.expectBody()
.jsonPath("$[0].name").isEqualTo("Jane")
.jsonPath("$[1].name").isEqualTo("Jason");

2.3. Streaming Responses

To test infinite streams (for example, "text/event-stream” or "application/stream+json"), you need
to exit the chained API (by using returnResult), immediately after the response status and header
assertions, as the following example shows:

FluxExchangeResult<MyEvent> result = client.get().uri("/events")
.accept (TEXT_EVENT_STREAM)
.exchange()
.expectStatus().is0k()
.returnResult(MyEvent.class);

Now you can consume the Flux<T>, assert decoded objects as they come, and then cancel at some
point when test objectives are met. We recommend using the StepVerifier from the reactor-test
module to do that, as the following example shows:

Flux<Event> eventFux = result.getResponseBody();

StepVerifier.create(eventFlux)
.expectNext(person)
.expectNextCount(4)
.consumeNextWith(p -> ...)
.thenCancel()
verify();

2.4. Request Body

When it comes to building requests, the WebTestClient offers an API identical to the WebClient, and
the implementation is mostly a simple pass-through. See the WebClient documentation for
examples on how to prepare a request with a body, including submitting form data, multipart
requests, and more.


web-reactive.pdf#webflux-client-body

	WebTestClient
	Chapter 1. Setup
	1.1. Bind to Controller
	1.2. Bind to Router Function
	1.3. Bind to ApplicationContext
	1.4. Bind to Server
	1.5. Client Builder

	Chapter 2. Writing Tests
	2.1. No Content
	2.2. JSON Content
	2.3. Streaming Responses
	2.4. Request Body


